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Abstract

Smart contracts are programs stored on a blockchain that run when predetermined conditions
are met. Blockchain and smart contract based solutions can facilitate secure exchanges within
a critical application. To do this, it is proposed to provide a simulation model to assist in the
analysis, development and implementation of safe protocols and smart contracts.

However, designing and implementing a smart contract is not trivial since upon deployment
on a blockchain, it is no longer possible to modify it (neither for improving nor for bug fixing).
It is only possible by deploying a new version of the smart contract which is costly (deployment
cost for the new contract and destruction cost for the old contract). To this end, there are many
solutions for testing the smart contracts before their deployment. Since realizing bug-free smart
contracts increase the reliability, as well as reduce the cost, testing is an essential activity.

In this paper, we first carry out a State-of-the-art to group the existing solutions that attempt to
tackle smart contract verification, validation and testing (VV&T) into following categories: public
test networks, security analysis tools, blockchain emulators and blockchain simulators. Then, we
analyze these solutions, categorize them and show what their pros and cons are.

Secondly, we focus on the main objective of this internship which is developing an agent-
based model to analyse by simulation the operational safety from the angle of the availability of
the consensus protocol of the Hyperledger blockchain using an agent-based simulation. To this
end, various hypotheses will be tested in order to build a solid design for applications that use
Hyperledger Fabric.

Finally, we validate our implementation considering an Energy Performance Contracts (EPC)
use case, a prototype to store and validate building energy consumption based on [18].
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2 Introduction

With Bitcoin, the blockchain technology initially gained traction in 2008 [35]. Nowadays, it
is considered as a major disruptive innovation with the potential to transform most industries. The
blockchain can be regarded as a transparent, secure technology for storing and transmitting informa-
tion that operates without a trusted third party.

For making the blockchain a general-purpose solution, Ethereum introduced the concept of smart
contracts [43], i.e. immutable code on the blockchain that gets executed automatically once certain
conditions are met between parties that do not necessarily trust each other. With smart contracts,
the blockchain technology have seen a rapid climb to prominence, with its applications in various
domains. They can improve insurance processes by automating claims when certain events occur,
enable better supply chains! and more applications in business, commerce, and governance are still
emerging . Given the wide range of smart contract adoption, best practices for implementing such
code must be taken.

Since smart contract deployment is definitive, the vulnerabilities and the attacks can challenge
the sustainability of applications using them. The most known ones are related to Ethereum: the
DAO attack in May 20167 that helped to gather around $150 million or the Parity Wallet hack?, on
November 8, 2017, that valued at over $152 million. Moreover, executing smart contracts consumes
certain amount of computation and memory. For instance, Ethereum community introduced gas, a
notion to measure the amount of computational power needed to be paid to the miners in order to
execute their operations.

Today, there are several blockchain systems that support smart contracts, such as Ethereum [43]
and Qorum [6] that use Solidity for writing smart contracts, Hyperledger Fabric [3] that utilizes
general-purpose programming languages (Go, Node.js, JavaScript and Java), Corda [9] that supports
Java and Kotlin languages, Stellar [29] that uses Javascript SDK and Node.js and NEO [28] that devel-
ops smart contracts using C#. Besides, Tezos[17] designed new functional programming languages for
smart contracts: Michelson, SmartPy and LIGO. Recently, Cardano* introduced smart contracts us-
ing Plutus, Marlowe & Glow programming languages. Besides, Tendermint/Cosmos® supports smart
contracts written in any languages. Bitcoin is also a pioneer in this field by enabling writing transac-
tional rules using its non Turing-complete language, called Script® and soon a completely new way of
designing smart contracts in Bitcoin will be introduced.

A smart contract is a set of immutable code which automatically executes, verifies and facilitates
changes to state objects in transactions and control actions defined. In that way, understanding how
smart contracts work is essential for the rest of our project.

The life-cycle of a smart contract consists of the following stages [18, 20, 27, 40]:

1. Analysis and design of the intended smart contract:

* Define the requirements and the use-cases of the smart contract (i.e. the functions, the
target blockchain, the target language, etc.).

* Design the clauses and the functions of the smart contract.

2. Implementation and testing of the smart contract:

'Smart Contract and Supply Chain, https://www.frontiersin.org/articles/10.3389/fbloc.2020.
535787/full, last access on 28/06/2021.

DAO attack cost, https://blog.b9lab.com/the-dao-hack-in-eight-minutes-94919018692d,
last access on 07/06/2021.

3Parity Wallet hack cost, ht tps: //cointelegraph.com/news/parity-multisig-wallet—hacked—-or—how-come,
last access on 07/06/2021.

4Cardano, https://docs.cardano.org/en/latest/index.html, last access on 16/06/2021.

>Tendermint, https://tendermint .com/core/, last access on 18/06/2021.

®Script, https://en.bitcoin.it/wiki/Script, last access on 15/06/2021.
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* Select a testing approach and implement the smart contract using a corresponding lan-
guage.
* Perform tests and analyze the results.

3. Repetition of the above steps till the desired smart contract is implemented in the target language
for the target blockchain.

4. Deployment of the smart contract onto blockchain network definitively.

5. Execution of the smart contract through functions calls:

¢ Select a smart contract function and send a function call in the form of transaction.

+ Upon the confirmation of the transaction, the smart contract function is executed’ and the
blockchain state is updated?.

6. Termination of the smart contract to stop execution of its functions’.

Consequently, implementation and testing phase is not trivial and should be taken into account
seriously.

To this end, there are various different verification, validation and testing (VV&T) solutions for
different purposes proposed in the literature. However, there is no survey covering all the VV&T
solutions for smart contracts.

Based on this observation, the objective of this internship is to justify the need to develop an agent-
based model to analyse by simulation the operational safety from the angle of the availability of the
consensus protocol of the Hyperledger blockchain. To this end, various hypotheses will be tested in
order to build a solid design for applications that use Hyperledger Fabric. Thus, this study will be
divided in three major sections:

* Part I: Identify existing testing/evaluation approaches for smart contracts.

 Part II: Design a smart contract model for Hyperledger Fabric and implement it on a blockchain
simulator.

e Paret III: Validate the implemented model through a use case.

"In fact, this is the case when the blockchain uses the Order-Execute-Update approach. However, there are also
blockchains that use the Execute-Order-Validate-Update approach [3, 38].

8The world state can always be regenerated from the blockchain. It works as a cache that only stores the current value
of a state.

Here it should be noted that smart contract can not be deleted from the blockchain.
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Figure 1: Smart contract lifecycle
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2.1 Context

To contextualize, the Dils!? of List Institute'! mandates to research and develop the key technolo-
gies of digital deployment: methods and tools for designing, producing and validating digital systems.
It includes the transfer of know-how and support from internal CEA and external users to the new
methods and tools developed by the department. It is composed of five different laboratories as shown

in Figure 2:
o DILS

LIDEO
Lab Executable Language Engineering and Optmizabon

LSEA
Embedded and Autonomous Systems Design Laboratory

LECS
Systems Regquirements and Compliance Laboratory

L5L
Software Safety and Security Laboratory

Licia
7| Laboratory for Trustworthy, Smart, Self-organizing Information Systems

Figure 2: DILS composition

The internship was carried out at LICIA CEA, a laboratory that develops methods, algorithms and
tools for formal analysis and engineering based on agents for: modeling, formalization and implemen-
tation of collaborative systems service contracts.

Particular interest is given to the integration of ’smart contracts” for the realization of trust sys-
tems; the elaboration and implementation of governance mechanisms through algorithms based on
collaborative multi-agent consensus. Particular attention is paid to blockchain mechanisms and in-
centive mechanisms; the development of analysis techniques based on game theory for assessing the
robustness and resilience of large cooperative systems.

Actually, the world of blockchains is in turmoil and many technologies are emerging on a regular
basis. The different consensus protocols (proof-of-work, proof-of-stake, PBFT, etc.) are all alter-
natives and combinations that must be understood, sorted and mastered in order to direct decision-
making and ensure the adequacy between the need and the available technology.

In addition, given the lack of feedback that we have on blockchain technology (due to the youth of
the technology) the dependability of blockchain applications has yet to be justified, which is a research
subject in itself.

In this internship subject we focus on the Hyperledger Fabric blockchain, a permissionned blockchain
infrastructure, providing a modular architecture with role-delineation between infrastructure nodes,
execution of smart contracts (called chaincode in Fabric), configurable consensus and membership
services.

2.2 Contributions

Blockchain and smart contract based solutions can facilitate secure exchanges within a critical ap-
plication. To do this, it is proposed to provide a simulation model to assist in the analysis, development
and implementation of safe protocols and smart contracts.

Département ingénierie logiciels et systémes
Systems and Technology Integration Laboratory
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The objective of this internship is to develop an agent-based model to analyse by simulation the
operational safety from the angle of the availability of the consensus protocol of the Hyperledger
blockchain. To this end, various hypotheses will be tested in order to build a solid design for applica-
tions that use Hyperledger Fabric.

The approach is to understand the Hyperledger Fabric’s architecture and make the following con-
tributions:

* Analyze existing approaches and solutions for verifying, validating and testing smart contracts
into distinctive groups w.r.t common characteristics.

* Detect limits of available solutions and justify our approach.

* Write and submit a white paper: ”A Survey of Verification, Validation and Testing Solutions for
Smart Contracts” to BCCA2021 (The Third International Conference on Blockchain Computing
and Applications)

* Propose an architecture to simulate smart contracts.
* Implement the proposed architecture for blockchain agnostics first then for the Fabric’s one.

* Validate the proposed solution via a representative use case.

Chaimaa BENABBOU Page 10
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3 State-of-the-art: VV&T Solutions

We provide a state-of-the-art of the available solutions that supports smart contracts. This sec-
tion is organized as follows: First, we divide the VV&T solutions into four distinctive categories
and explain them (Section 3.1). Then we analyze each category and compare them with respect to
their proprieties (Section 3.2). After, we provide a discussion about how these solutions can be used
together (Section 3.3). Finally, we identify open challenges and conclude the first section (Section
3.4).

3.1 Testing

From a software engineering point of view, to ensure the correctness of smart contracts, we use a
technique conducted to perform verification, validation and testing (VV&T). Verification is the process
to ensure that “we are developing the right product” (i.e. it meets the specifications), validation is to
ensure that ”we have developed the product right” (i.e. it fulfills its intended purpose) and testing is
to reveal “the existence of errors in the product”, as stated in [7]. This involves verifying whether the
detailed functional VV&T of business logic and process are operating as expected.

Since they are immutable code, once deployed, they are final and cannot be updated. The only
way to fix a bug on a deployed smart contract is to deploy a new version of it; the old version remain
there forever. So perfoming VV&T before deployment make sure the smart contract has the expected
behaviors.

To tackle these problems, many VV&T solutions have already been proposed and are still being
proposed in the literature. To better analyze these solutions and compare them, we grouped them into
four main categories: public test networks, security analysis tools, blockchain emulators with smart
contracts support and blockchain simulators with smart contracts support.

3.1.1 Public Test Networks

Blockchain systems are deployed onto public networks, called main networks. It is the end product
available for the public to use. For VV&T purposes, there are also public available networks, called
(public) test networks, in which anyone can access via their clients (i.e. popular wallet interfaces).

Public test networks enable to compile and deploy smart contracts and perform frequent tasks,
such as running tests, automatically checking code for compilation errors or interacting with smart
contracts in a public environment.

When using a public test network, the environment conditions are the same as the main network.
The main difference is that, while in the main network crypto-currencies are traded for goods and
services, in test networks they are given away for free without the need for mining. Hence, users do
not have sufficient control to configure the network conditions. They are created and only configured
by people from the community.

The main steps to test smart contracts using public test networks are:

* Choose a public test network depending on the desired target blockchain.

* Create a wallet to store the crypto-currencies using a blockchain client.

* Claim a desired amount of coins for free from a Faucet Website

* Connect the blockchain client to the test network.

* Write a smart contract using a target language and deploy it onto the test network.

 For each smart contract function, write a test using a language that can interact with the blockchain
client and execute it through the blockchain client.

Chaimaa BENABBOU Page 11
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There are several public test networks that exist in the literature. The Ethereum community pro-
posed Ropsten'?, Rinkby'3, Kovan'* and Gorli'> test networks. While the Tezos community intro-
duced Teztnets'®, a platform to help in the deployment of Tezos test networks, namely Florencenet
and Granadanet. Testnet3!” is another test network proposed by the Bitcoin community, nearly iden-
tical in characteristics to Bitcoin blockchain, that overcomes some difficulties related to transaction
delay of the previous Testnet2. The Hyperledger Fabric community has also released two versions
of Fabric test network'® (v1.4 and v2.1) that enable developers to test their smart contracts and ap-
plications. Tendermint community provides gaia and basecoind tesnets for Tendermint/Cosmos-like
blockchains.

3.1.2 Security Analysis Tools

Security analysis tools allow automatically analysing smart contracts and detecting some of their
predefined common vulnerabilities. without necessarily deploying the smart contract to a blockchain
test network. To validate, verify and test smart contracts using such tools, it is necessary to write
the smart contract and either invoke the dedicated tool command or add the tool plugin, if possible,
to a blockchain emulator that supports it. The security analysis tools then analyze either the source
code of the smart contract or its compiled blockchain virtual machine bytecode. Most of the security
analysis tools in the literature are developed for the Ethereum blockchain [2, 4, 19]. The most well-
known ones are Why3 [36], Oyente [26], Mythxlg, Mythrilzo, SmartCheck®, Securify [42], Osiris [12],
Sereum [33], Manticore?*, MAIAN?3, Solgraph®*, Reguard [25], Slither [15], Fether [44], FSolidM
[30], VeriSolid [31], ZoKrates [14] and Vandal [8].

Concerning other blockchain systems, to the best of our knowledge, there are only a few solutions,
namely Chaincode analyzer® [23] and Revive™"c? for Hyperledger Blockchain, Zeus for Ethereum
and Hyperledger [22], and SODA [11] for any blockchain that adopts EVM as its smart contract
runtime.

3.1.3 Blockchain Emulators with smart contract support

Blockchain emulators are software programs that imitate the features of a blockchain. They enable
reproducing blockchain networks locally to mimic the outer behavior of the main network features. In
other words, they duplicate completely the main network in a virtual environment to emulate VV&T
scenarios. Thus, it allows the developer to debug and test smart contracts.

Generally, the emulators come with a default network configuration file but it can be expanded
to change the environment options (include more networks, choose the mining mode, adapt the block

12Ropsten Test Network, https://ropsten.etherscan.io/, last accessed on 26/05/2021.

BRinkby Test Network, https://rinkeby.etherscan.io/, last accessed on 26/05/2021.

4Kovan Test Network, https://kovan.etherscan.io/, last accessed on 26/05/2021.

15Gorli test network, https://goerli.net/, last access on 26/05/2021.

Teztnets,https: //teztnets.xyz/, last access on 04/06/2021.

"Bitcoin actual test network, https://en.bitcoinwiki.org/wiki/Testnet#Testnet_vs_Testnet2,
last access on 14/06/2021.

8Hyperledger Fabric test netxork , ht tps: //hyperledger-fabric.readthedocs.io/en/latest/test_
network.html, last access on 26/05/2021.

19Mythx, https://mythx.io/about/, lastaccess26/05/2021, last access on 25/05/2021.

PMythril, https://github.com/ConsenSys/mythril, last access on 25/05/2021.

2lSmartCheck, https://smartcontracts.smartdec.net/, last access on 25/05/2021.

22Manticore, https://github.com/trailofbits/manticore, last access on 27/05/2021.

BMAIAN, https://github.com/ivicanikolicsg/MATIAN, last access on 27/05/2021.

*Solgraph, https://github.com/raineorshine/solgraph, last access on 27/05/2021.

BChaincode analyzer, https://github.com/Fujitsulaboratories/ChaincodeAnalyzer, last access
on 10/06/2021.

%Revive™c tool, https://github.com/sivachokkapu/revive-cc, last access on 01/06/2021.
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time, etc) or smart contracts options.
To test smart contracts on emulators, a user needs to:

* Configure the blockchain if wanted (most of emulators come with a default configurations).
* Write and compile a smart contract.

* Migrate (or deploy) the smart contract locally on to the emulated blockchain.

* Run automated tests or write quick and effective tests.

In the literature, several smart contract emulators exist: Hyperledger Umbra®’, Hyperledger Caliper®,
Hardhat*®, Truﬁ‘le30, Brownie’!, Takamaka [41], Ganache®?, Blockbench [13], Hawk [24], Remix>3,
Tenderly®*, and Embark> .

3.1.4 Blockchain Simulators with smart contract support

A blockchain simulator can mimic the internal behaviours of blockchains. They are used when
there is the need for the blockchain to perform in an expected way. It helps developers create a copy of
an existing blockchain into a virtual environment to get an idea about how, in our case, smart contracts
work. It does not follow all the rules of a main network but simulate the relevant behaviors. It enables
users design, implement and evaluate a blockchain with the desired configuration of the network’s
initial conditions using different settings and parameters.

To test smart contracts on simulators, a user should:

* Set up the blockchain configuration
* Write a smart contract
* Deploy the smart contract on the simulated blockchain

* Write tests for deployed smart contracts’ functions

There are several blockchain simulators in the literature, yet, to the best of our knowledge, there
is only one blockchain simulator supporting smart contracts: Guantlet>® [5].

3.2 Analysis of Solutions

VV&T solutions are used to build smart contracts more efficiently and aim at improving their
security and correctness. In this section, we examine and compare the aforementioned solutions.

Table 1 summarizes the most known smart contracts vulnerabilities w.r.t three scopes: (1) smart
contract scope that occurs due to the source code (such as integer overflow/underflow when performing
operations with value limitations), (2) application scope that represents interactions between smart
contracts or smart contracts and other entities (such as Front Running) and (3) blockchain system

“"Hyperledger Umbra, https://github.com/hyperledger-1labs/umbra, last access on 08/06/2021

BHyperledger Caliper, https://hyperledger.github.io/caliper/, last access on 27/05/2021

»Hardhat test network, https: //hardhat .org/

O Truffle Suite,https://www.trufflesuite.com/, last access on 26/05/2021

3 Brownie framework, https://eth-brownie.readthedocs.io/en/stable/, last access on 01/06/2021

32Ganache, https://www.trufflesuite.com/docs/ganache/overview, last access on 26/05/2021

¥Remix: https://remix.ethereum.orqg/, last access on 25/05/2021.

*Tenderly: https://tenderly.co/transaction-simulator/

35Embark tutorial, https: //framework.embarklabs.io/docs/contracts_configuration.html last
access on 09/06/2021.

3Guantlelt, https: //gauntlet .network/, last access on 16/06/2021.
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scope that exercises the full blockchain entities togheter (such as Transaction Order Dependence when
the order of transactions can be easily manipulated) .

Table 3 summarizes the available VV&T solutions for smart contracts w.r.t target blockchains®’,
smart contract languages, testing languages, vulnerabilities and Table 2 presents the level of control
a developer have while using these different categories. We can easily see that the security analysis
tools available are numerous compared to other categories. More precisely, we have 10 public test
networks, 20 security analysis tools, 10 blockchain emulators with smart contract support and only 1
blockchain simulator with smart contract support.

Besides, it is also easy to see the vast majority of solutions support Ethereum while support for
other blockchains is more scarse. Bitcoin, despite being the most known blockchain, has only one
VV&T solution, a public test network that supports smart contracts (i.e. scripts), but there is no tool
or emulator available for it.

3.2.1 Target Blockchain

As shown in Table 3, most of the VV&T solutions are dedicated to a very limited number of target
blockchains. It is natural that, all public test networks are dedicated to specific target blockchains.
Each target blockchain has at least one dedicated public test network. Most security analysis tools,
however, including Ropsten, Rinkby, Oyente, Mythril and Smartcheck support only the Ethereum
blockchain. There are only two tools supporting Hyperledger. Concerning Tendermint/Cosmos-like
blockchains, most security analysis tools are supported, while no tools are available for the other target
blockchains.

Blockchain emulators are similar to public test networks and thus they are usually dedicated to
a single target blockchain or its derivations. Hardhat, Truffle and Brownie, for instance, support
Ethereum and its variations. But, blockchain emulators also sometimes support other blockchains.
Hyperledger Caliper and Blockbench, for example, support Ethereum and derivations of Hyperledger.

There is only one simulator solution but it is better at supporting various target blockchains if they
are well designed. The simulator identified, Gauntlet, supports several types of target blockchains,
namely Ethereum and Tendermint/Cosmos.

3.2.2 Smart Contract and Test Languages

Concerning programming languages, most VV&T solutions support different ones for writing
smart contracts and writing tests (Table 3). The test networks for Ethereum support Solidity for
smart contracts while tests are written in Javascript. Hyperledger Fabric and Tendermint/Cosmos
test networks provide a larger range of languages, such as Solidity, Go, Node.js, Java, Javascript and
Python for both smart contracts and tests.

When we look at security analysis tools, since most of them are dedicated to Ethereum, they are
mostly supporting Solidity as a smart contract language. Most of these tools do not permit testers to
implement their tests and provide predefined commands. Concerning emulators, they are similar to
test networks and they support dedicated languages of the target blockchains. Concerning simulators,
Gauntlet supports python as programming language.

3.2.3 Vulnerabilities and Attacks

Among all VV&T solutions, only security analysis tools come with pre-defined vulnerability tests
that can be directly used (Table 3).

More in detail, all security analysis tools have pre-defined vulnerabilities and it is also possible
to improve the supported vulnerabilities using plug-ins (e.g., FSolidM and VeriSolid). Public test

37 Target blockchain™ covers all the blockchains based on the principle one (i.e Ethereum covers Parity, Quorum, etc.)
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networks and simulators, in contrast, provide manual VV&T by user-defined scenarios. Emulators
provide manual and automated VV&T since they can add security analysis tools as plug-ins. For ex-
ample, Remix and Truffle can add Mythx as a plug-ins and make use of its pre-defined vulnerabilities.

Regarding the vulnerabilities, the ones that are addressed the most by security analysis tools are
Reentrancy, Timestamp dependence, Transaction Ordering Dependence and Integer overflow/underflow
as shown in Table 3.

Considering Table 1, other vulnerabilities®® exist w.r.t different scopes. Security analysis tools
mostly focus on the smart contract code and can not perform VV&T from the blockchain system
scope as they do not have a global view of it. Considering other approaches, they enable us checking
for different scopes of vulnerabilities.

A series of challenges have emerged related to vulnerabilities in the smart contract programming
which lead to various attacks [34].

Here is a brief description of some common smart contracts vulnerabilities and attacks that the
testing solutions analyze ( for more details, refer to Figures 5 and 6 in the Appendix 8) .

Vulnerab. & Afiac Scope Smart Contract Application Blockchain System
Integer Overflow/Underflow
Integer Bugs

Unchecked Send Bug
Mishandled Exceptions

Gas costly patterns

tx.origin usage

Callstack depth exception
Reentrency

Front Running

Timestamp Dependence
DoS Attack

DAO attack

Black listed imports
Transaction Order Depend.
Global State Variables

Call to the unknown

Read after write

S RNENENEN

ANENENENENENEN

ENENENENEN

Table 1: Scopes of vulnerabilities and attacks [23, 32]

3.2.4 Parameter Control

In Table 2, a comparison is made between the four categories considering the configuration pa-
rameters in control. For that, we fix a set of network, blockchain and smart contract parameters:

* Network-level paramaters:

— Size : number of nodes of the network

— Message transmission delay : communication delay between nodes

— Message transmission reliability : the ability of a message to be successfully transmitted
within its deadline.

* Blockchain-level parameters:

— Tx Fees : transaction fees

— BlockSize : the maximum size of blocks

38Smart Contract Weakness Classification Registry, https://swcregistry.io/, last access on 01/07/2021

Chaimaa BENABBOU Page 15


https://swcregistry.io/

ENSEEIHT Internship report

— BatchTimeOut : Block creation frequency.
— BlockCreationMode : define the mining mode (mine when needed, always mine, turn off
the miner, etc.), the consensus to consider, its difficulty,

* Smart contract level parameters:

— size : the maximum size of a smart contract

— dependencies : specifies the smart contracts it depends on.

In public test networks and blockchain emulators, blockchain-level parameters (e.g., chain config-
uration, level of difficulty to mine blocks) are defined in the genesis block. In blockchain simulators,
on the other hand, the parameter are usually configured in a configuration file which is used by the
simulator to initialize the simulation.

VV&T Solutions Test Net. | S.A. Tools | Bc. Emu [ Bc. Simu

Size Partial v

Network Msg trans. delay Partial v

@ Msg trans. reliability Partial v
) Genesis Block 4 Partial v v
S TX fees Partial v
E Blockchain Block size Partial v
= Batch time out Partial v
- BlockCreation Mode Partial Ve
Size Partial Ve

Smart Contract Dependencies v v v v

Table 2: Control of parameters

3.3 Discussion

Despite the advances in smart contracts VV&T solutions during the last couple of years, our study
highlights several open challenges to be tackled by future work. Not surprisingly, the vast majority of
solutions support the Solidity language since Ethereum is the mostly supported blockchain. However,
tests are usually conducted with general purpose languages like JavaScript, Java or Go.

We identify the following challenges:

3.3.1 Pre-defined vs User-defined vulnerabilities

Most security analysis tools have a useful set of pre-defined vulnerabilities to analyze smart con-
tracts and thus save time of developing user-defined scenarios. However, these tools consider generic
properties and do not capture specific vulnerabilities such as the Front Running vulnerability which
is one of the major security issues. Thus, these tools are effective in detecting typical errors but
ineffective in detecting atypical vulnerabilities.

Therefore, manual generation of meaningful scenarios becomes a necessity. It enables us inspect
deep corner cases that users are already aware of, given the wide range of vulnerabilities that can occur
in smart contracts. Still, developing them could be very costly in time.

The appropriate way to proceed is a mix between pre-defined and user-defined solutions, which
will speed up the VV&T process. In that way, we do not waste time in writing scenarios that security
analysis tools can already detect and only focus on detecting the non-defined ones.
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Bitcoin

Target Blockchain

Ethereum
Tendermint/Cosmos
Others

Hyperledger Fabric

SC Language

(Bitcoin) Script
Solidity
Go
Java
JavaScript
Others
Solidity

Vulnerabilities

Test Language

Pre-defined

Go
Java
JavaScript
Python
Others
Reentrency
Trans. order depen
Timestamp depen.
Int. over-/under-flo
Others
User-defined
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Blockchain Emulators with smart contract support

Hyperledger Umbra
Hyperldeger Caliper
Hardhat

Truffle

Brownie

Ganache
Blockbench

Remix

Tenderly

Embark

v

v 7 v

v

NN
RSN
<K

gassaaasaay 9«

Total

0

3 0 1

0 0 0 0 0

Blockchain Simulators

with

art contract s

Gauntlet

v
v
v
v
v
v
v
v
9
sm;
v

v v

\

Total

0

0 T 1

Total

|

|
326 225

—
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—
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Table 3: Resume of VV&T solutions wrt the target blockchain, smart contract language programming, test
language programming and type of vulnerabilities detected.
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3.3.2 Programming Languages

As demonstrated in Table 3, most testing solutions support a domain-specific language (DSL),
Solidity, as a smart contract language. Others (most recent ones) use common general-purpose lan-
guages such as Java that were not initially conceived for smart contracts and thus make less expressive
but easier to developers since they are more familiar with them. Hence, the vulnerabilities and risks
associated to a certain language are not the same with others, due to each language features and re-
strictions. With DSLs, very useful libraries that facilitate the programming of smart contracts are
provided. While with general-purpose languages, there are no features or restrictions to write safe
smart contracts. For example, using Go language, a non determinism may arise, leading to random
number generation or global variables vulnerabilities. This does not mean that with general-purpose
languages, more vulnerabilities will occur but using the available libraries in DSLs (i.e Solidity pro-
vides reusable behaviors and implementations of various standards such as OpenZeppelin, HQ20,
DappSys), a consequent number of them can be avoided due to specific restrictions.

3.3.3 Community Participation

A smart contract project can be more successful if a community of volunteers who are globally
distributed participate to the VV&T process through the Internet, as also identified by the open source
community [39]. This enables the community to make more tests and thus helps in detecting a large
range of vulnerabilities. There are two ways to this: (1) the smart contract can be deployed onto a
public test network and thus made available to the community, or (2) the smart contract project can be
made available to community through a public repository.

3.3.4 Confidentiality

There is a big interest from industries to adapt their existing services or new services as smart con-
tracts. To this end, they are actively doing several proof-of-concept studies. During these studies, the
industries usually use confidential information (e.g. sensitive data, confidential algorithms, solutions)
that they do not want them to be shared publicly until they finalize their smart contract based solution.
In such cases, obviously public test networks are not suitable as a VV&T approach. It is rather better
using the other three approaches (i.e. security analysis tools, blockchain emulators or blockchain sim-
ulators) without putting their smart contract in a public environment. The disadvantage of this is that
they cannot benefit from the community involvement that can speed up vulnerability exploration.

3.3.5 Flexibility of parameters

An important point to mention about these testing solutions is the network size. Actually, testing
solutions have generally fewer nodes than a main network. For example, the size of the main Bitcoin
blockchain on May 20, 2021 is about 337 Gigabytes®® whereas the size of the Testnet3 blockchain in
2020 is only about 32 Gigabytes. This makes transactions lighter and faster which simplifies perform-
ing attacks as it does not require large capacity. Also, depending on the control parameters, we could
perform different tests, whether on vulnerabilities, latency, performance, etc.

3.3.6 Levels of testing

In traditional testing literature, the major levels of testing are unit-, integration- and system-levels,
and some type of acceptance-level [10]. Basically, unit testing is used to make sure that the imple-
mented code meets the user specifications and works properly. Integration testing, however, is used to

¥Size of Bitcoin blockchain on May 20,2021, https://www.statista.com/statistics/647523/
worldwide-bitcoin-blockchain—-size/, last access on 14/06/2021
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combine different parts and test them jointly (in our case, it could be different smart contracts, or the
smart contract and the user interactions). Finally, system testing is used to test all the components to
ensure the overall right functioning.

Considering smart contracts, the scopes of potential vulnerabilities are identified in Table 1. Based
on this observation, we can say that smart contract, decentralized application and blockchain system
level vulnerabilities should be tested using unit, integration and system level testing respectively.

As shown in Table 3, different testing solutions provides mechanisms for testing smart contracts
against different types of vulnerabilities and attacks. It is up to the developer/tester to identify the tests
to be accomplished and to choose the appropriate testing solutions.

For instance, as shown in Section 3.2, except for simulators, all existing solutions are dedicated
to a single blockchain technology and its variations. Consequently, if we want to explore what-if
scenarios for different blockchains in order to chose a target platform, obviously simulators are the
best option to do so. However, to facilitate such an exploration, the simulator should provide some
built-in capabilities that can be applied to various types of blockchain systems. Currently, there is only
Gauntlet that can simulate different types of blockchain systems supporting smart contracts.

3.4 Challenges

Smart contracts benefit from a widespread interest because of their huge potential. However, in
order to effectively build smart contracts, they need to be tested in an effective and systematic manner.
In our state-of-the-art, we analyzed four categories of smart contract testing approaches: using test
network, using security analysis tools, using blockchain emulators with smart contracts support and
using blockchain simulators with smart contract support.

This shows that several VV&T solutions exist, ensure the correctness and non vulnerable patterns
in smart contracts. Nevertheless, they either focus on specific security aspects, a specific blockchain
and a programming language or provide limited configurations.

Besides, solutions that limit the implementation language or the environment are less general and
require the user to adapt their applications which could be infeasible or very expensive. In addition,
the variety of testing solutions available make it confusing and difficult as to where to start working
with them.

As a result, we focus on developing a smart contract simulator since it offers more flexibility and
control over the system’s parameters and enables all the testing levels. And to be more specific, we
centralize our project on the Hyperledger Fabric blockchain which offers a new architecture presented
in Section 4.1.

This state-of-the-art is submitted to the BCCA 2021 conference (under review).
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4 Background

4.1 Blockchain systems

Blockchain is an append-only distributed ledger that can record transactions between two parties
efficiently and in a verifiable and permanent way. Blockchain is an ordered list of blocks - data
containers- that are created by nodes participating in the consensus process: they contain recorded
data from previous transactions that can not be deleted, and anyone can read it from and verify its
correctness. After recording recent transactions, a new block is generated and the blocks will be
validated by the miners by analyzing the complete history of the block. If the block is validated, it
will be time-stamped and added to the blockchain. Once added, it cannot be modified or deleted. The
chain begins with a genesis block at index 0 and each block appended links to its direct predecessor
forming the chain.

An appealing application that can be deployed on top of blockchain is smart contracts.

4.1.1 Smart contracts

Smart contracts, proposed in the early 1990s, enable parties to formally specify a cryptographi-
cally enforceable agreement, portending Bitcoin’s scripting capabilities. A smart contract is a digital
contract with an agreement between two people in the form of computer code. They run on the
blockchain, so they are stored on a public database and are immutable as the blockchain.

The transactions that happen in a smart contract are processed by the blockchain when the condi-
tions in the agreement are met which means they can be sent automatically without a third party.

More specifically, a smart contract is a deterministic program stored as executable bytecode on the
blockchain, which means they inherit certain properties - immutability and global distributability.

They are used for two purposes:

¢ Hold funds and state, which are stored in the blockchain under the contract’s address.
* Run logic/code that performs actions with those funds or updates the contract’s state.

To do so, the code itself is replicated across multiple nodes of a blockchain and, therefore, benefits
from the security, permanence and immutability that a blockchain offers. That replication also means
that as each new block is added to the blockchain, the code is, in effect, executed. If the parties have
indicated, by initiating a transaction, that certain parameters have been met, the code will execute the
step triggered by those parameters. If no, such transaction has been initiated, the code will not take
any further steps.

Before a compiled smart contract actually can be executed on certain blockchains, an additional
step is required, namely, the payment of a transaction fee for the contract to be added to the chain and
executed upon. In the case of the Ethereum blockchain, smart contracts are executed on the Ethereum
Virtual Machine (EVM), and this payment, made through the ether cryptocurrency, is known as “gas.”

Smart contracts are first compiled and converted into bytecode before the deployment. Various
high-level languages in the community compiles and converts the code to the EVM bytecode. The
most popular one is Solidity. This bytecode is then stored on the blockchain and an address is assigned
to it.

An important point to mention is that smart contracts get executed only due to a transaction call.
A contract can call another one but the first contract must be called by a transaction.

To understand more the logic of smart contracts, we give an overview of the execution of a trans-
action using a smart contract considering Ethereum blockchain and using Remix IDE: A think to
mention is, while using Ethereum blockchain, each transaction execution consumes a certain amount
of gas.
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Design

We first design and write the Ethereum smart contract in Solidity as follows 3:

pragma solidity

the 1nput m

echo(string calldata message) external {
Echo(message);

Figure 3: Smart Contract solidity code

Compile
As soon as the contract is compiled (see Figure 4), a file including the contract bytecode (sample-
Contract.json required for deployment) and the contract ABI will be generated (see Figure 5).

@ Home & g
SOLIDITY COMPILER Q @ @& Hon £ sampleContract sol

pragma solidity
COMPILER

.8.1+commit.df193b15
nclude nightly k
LA GE
Solidity
EVM VERSION

compiler default

OMPILER COMFIGURATION

£ Compile sampleContract.sol

CONTRACT

sampleContract (sampleContract.sol) =

Figure 4: Smart Contract compiled
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Figure 5: Smart Contract bytecode generated

Deploy

Deploying a smart contract on the Ethereum blockchain is done by the means of the creation of
a transaction sent to the special contract creation address. Each smart contract is then identified by
an address, which is derived from the contract creation transaction as a function of the originating an
account and a nonce. It can be used in a transaction as a sender, a receiver or a callee of the contract’s
functions.
Once deployed, we can see that the contract has an address in Figure 6. The smart contract is then
stored on the blockchain.

Chaimaa BENABBOU Page 22



ENSEEIHT Internship report

DEPLOY & RUN TRANSACTIONS

—_—_——

0x5B3...eddC4 (99.99999999999957436

3000000

At Address

Transactions recorded 3

Deployed Contracts

Low level interactions

Figure 6: Smart Contract deployed

Smart contract calls

Once the smart contract is deployed, users can call its functions using transaction/message calls.
Users or contracts can call other contracts by sending message calls that determine a sender, a receiver,
a data payload, value of Ether sent and the amount of gas left and the type data to return.

Having access to the payload, the smart contract executes the method/function then returns the
result which will be stored at the sender’s memory.

The payload is composed of:

* Function Selector: to identify the function to execute
* Function Arguments: to determine the arguments of the function to call

Once the function call is executed, we can observe the balance changes. The list of functions from
the smart contract can be seen in 6. One can interact with a deployed smart contract using the function
buttons. Once we call a smart contract function, we can see the status, the cost, the address of the
transaction and more as in Figure 7.
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0 wei data: @xfl> 0 ogs: 1 hash: €

Figure 7: Smart Contract call

4.1.2 Blockchain Architectures

A transaction is an operation that requires changing the status of the blockchain, a message that
is sent from one account to another account that includes payload (binary data) and an amount of
cryptocurrencies.

Each time transactions are created, they follow a certain steps depending on the blockchain archi-
tecture. Actually, nowadays, two blockchain architectures exist:

* An Execute-After/Order-Execute architecture (see Figure 8) where we first reach a consensus
on the order of transactions and then the transactions are executed by all nodes in order. At the
same time, each node participating in mining must “execute” each transaction that is about to
be wrapped in the block by itself before “ordering”, and discard the invalid transaction. So all
nodes “re-execute” the transactions in sequence in order to validate the result after receiving the
block.

The local ledger is updated after the re-execution.

ERC J—
T Y, W
—] W e I
w w LY
Order Execute Update state
« Consensus or « Deterministic (1) = Persist state on
atomic broadcast execution all peers

Figure 8: Order-execute architecture [3]

Bitcoin, Ethereum and Quorum are based on execute-order architecture. In this mode, the node
can only update its own state through the repeated execution results of the computation process.
It must be repeatedly executed by each node, which makes Nakamoto blockchain inefficient.

Some of the limitations that this introduces a sequential execution of all transactions which
directly affects transaction throughput. It also limits the scalability and endorsement by all
peers.

* An Execute-First/Execute-order-validate architecture has been proposed in Hyperledger Fabric[3]
to support parallel transactions and improve the blockchain’s throughput. In this architecture,
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transactions are executed before the blockchain reaches consensus on their place in the chain,
as illustrated in Figure 9.

- P » ——,
e, =
— (Varien Vann o —
VoY LY
Execute Order Validate Update state
* Simulate trans. + Order rw-sets + Validate endorse- « Persist state on all
and endorse « Atomic broadcast ments & rw-sets peers
» Create rw-set (consensus) = Eliminate invalid
- Collect endorse- - Stateless ordering ~ @nd conflicting
ments service trans.

Figure 9: Execute-order-validate architecture [3]

Specifically, the update of the ledger follows three steps, which ensures that all the peers in a
blockchain network keep their ledgers consistent with each other:

— Transaction Execution: In the first phase, the transaction proposal is sent to each of the
required set of peers. Later, the peers independently executes the transaction proposal,
simulate it, determine if it is valid and sign it.

— Transaction Ordering through a consensus protocol : The second phase is the packag-
ing phase where a specific nodes collaborate to reach consensus, create blocks and order
them in a well-defined sequence.

— Transaction Validation : In the final phase, the transaction is dispatched to all peers.
Once the peers receive the blocks, they ensure that all block transactions have been vali-
dated. Then, they commit it to the global state of the blockchain.

Transactions, once executed, the changes in the global state (contracts, accounts, etc.) are
recorded only if all execution terminates successfully.

4.2 Agent Based Modeling of Blockchain Systems

Agent-based modeling (ABM) [16] is a powerful simulation modeling technique that excels in its
ability to simulate complex systems. Such systems often self-organize themselves and create emergent
order. Agent-based models also include models of behaviour and are used to observe the collective
effects of agent behaviours and interactions. They have been used to simulate a variety of social
phenomena and environments, with the objective of providing decision support for decision makers in
various domains.

In ABM, a system is modeled as a collection of autonomous decision-making entities called
agents. Each agent individually assesses its situation and makes decisions on the basis of a set of
rules. ABM can exhibit complex behavior patterns and provide valuable information about the dy-
namics of the real-world system that it emulates. It also provides a natural framework for tuning
the complexity of the agents: behavior, degree of rationality, ability to learn and evolve and rules of
interactions.

The benefits of ABM over other modeling techniques can be captured in the capability of formu-
lating truly flexible actor behavior, capturing emergent phenomena and providing a natural description
of a system.

4.2.1 Agent/Environment/Role model

The Agent/Environment/Role (AER) model is based on three first-class abstractions: agent, envi-
ronment and role. Those abstractions are composable and interact with each other.
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To create an agent-based model, the following three elements [21] have to be explicitly dealt with:

* A set of agents, their attributes and behaviours: which are objects representing the active and
communicating entities playing roles within environment and play at least one role in an envi-

ronment.

* Roles, a set of agent relationships and methods of interaction :

allowing agents to interact

with each other and manipulate passive environment’s objects. Depending on the application,
agents can communicate either directly by sending a message or through a shared memory
or alternatively indirectly as for bio-inspired multi-agent systems by sending signals via the
environment. In some applications, agents do not communicate with each other but interact
through the use of game theory or learning by observing the behaviour of others.

* The agents’ environment : "’is a first-class abstraction that provides the surrounding conditions
for agents to exist and that mediates both the interaction among agents and the access to re-

sources” [37]. It identifies contexts for patterns of activities (i.e. roles).

To begin the simulation, first, roles of the system to model should be defined. Once done, we
define actions/behaviors corresponding to the different roles defined. Then, we define the environment
with the allowed roles. Then we define the agent types, their roles and the actions to take during the
simulation to interact with one another inside an environment.

4.2.2 Blockchain roles

Considering [1], agents roles in blockchain systems can be resumed into nine generic roles identi-

fied in Figure 10.

<<Role>>
Transaction Proposer

<<Role>>
Transaction Endorser

<<Role>>
Blockchain Maintainer

- wallet

- transactionEndorsementPolicy

+ propose(Transaction)

A ereateTransaction( Payload, Receiver) : Transaction

A endorse(Transaction)

- blockehain
- memory pool

<<Role>>
Block Proposer

<<Role>>
Block Endorser

A validate(Transaction)
A store(Transaction)

A validate(Block)

A append(Block)

A execute(Transaction)

A selectTransactions() : Transaction|)
A ereateBlock(Block, Transaction|)) : Block
4+ propose(Block)

- blockEndorsementPolicy

A endorse(Block)

<<Role>>
Contractor

<<Role>>
Investor

<<Role>>
Investee

- properties

- incentives

- investors

A specifyInvestment() : Amount, Investee
A invest(Amount, Investee)
A withdraw(Amount, Investee)

A redistribute( Amount, Investor)

A eontract Behaviorl()

A contract BehaviorN()

<<Role>>
Group Manager

- groupSpecification

A authorize()

Figure 10: Generic blockchain roles [1]

 Transaction Proposer : in charge of proposing transactions.

<<Role>>
Oracle

A oracle Behaviorl()

A oracle Behavior N ()

* Transaction Endorser : in charge of endorsing the transaction propositions.
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* Blockchain Maintainer : in charge of maintaining the data structure.

* Block Proposer : in charge of creating and proposing blocks.

* Block Endorser : in charge of endorsing the proposed blocks.

* Contractor : in charge of fixing the contractual rules between participants.
* Investor : in charge of making investments.

* Investee : in charge of redistributing rewards to the investors.

* Group Manager : in charge of checking the conformity of the structure.

* Oracle : in charge of other services.

For more details, refer to [1].
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5 Hyperledger Fabric

Fabric is a framework for developing Blockchain-based solutions for the enterprise, originally
contributed by Linux Foundation and IBM, providing a modular architecture with a delineation of
roles between the nodes in the infrastructure, execution of chaincode/smart contracts, configurable
consensus and membership services.

5.1 Fundamental Elements

The most important components of a Hyperledger Fabric system are (refer to Figure 11):

Endorsing/Validating peers: execute/endorse a given transaction and satisfy the transaction’s
endorsement policy.

Chaincode : is the smart contract that runs on the peers and creates transactions. More broadly,
it enables users to formally specify an enforceable agreement on some application logic.

Ordering service nodes (OSN) : provides a shared communication channel to clients and peers,
offering a broadcast service for messages containing transactions.

Membership service provider (MSP) : is responsible for managing identities of all participants
in the network.

Channels : is defined by a set of members, peers, chaincode and orderer nodes.

Applications: are used by users to interact with a blockchain network by submitting transactions
to a ledger or querying ledger content.

Organisations: are entities which have access to channels and can issue identities to participants
so that every transaction’s source is clear and identifiable.

Certification Authority (CA): provides a number of certificate services to users of a blockchain.

Organisation 1
i Peer 2
Peer 1 Blockchain 1 Peer 3
: icati Blockchain 1 Chaincode 1 Blockchain 1
Application 1 Chaincode 1 Policy1 Chaincode 1
i Policy1 Policy1 IR R
Orderer 1 i
O :
a :
@
8
= :
Channel o :
»
@
2!
Orderer 2 )
! “ Peer 4 Poer 5 Peer 8
ioati Blockchain 1 eer Blockchain 1
! Application 2 Chaincode 2 Blockchain 1 Chaincode 2
Policy1 Chaincode 2 Policy1
Policy1
Organization 2 H Blockchain
Network

Figure 11: Hyperledger Fabric Elements

Chaimaa BENABBOU Page 28


http://www.linuxfoundation.org.
https://www.ibm.com/blogs/blockchain/category/blockchain-development/hyperledger-fabric/

ENSEEIHT Internship report

5.2 Endorsement Policies

In Hyperledger Fabric, each chaincode/smart contract get validated by the mean of an endorsement
policy defined in it and agreed by the channel members. This endorsement policy determines the
endorser peers where each one of them must approve or not the result of a transaction execution. To
validate a chaincode call, a sufficient number of channel members should approve it. If the chaincode
call (transaction call) is validated, it is added to the memory pool, if not, it is not considered.

5.3 Smart Contract Transaction Lifecycle

Hyperledger Fabric follows an Execute-Order-Validate philosophy (refer toSection 4.1.2) while
most of the existing blockchains implement an Order-Execute model, like Bitcoin and Ethereum.

For more clarity, an example is provided in Figure 12 that describes the life cycle of a transaction in
Hyperledger Fabric blockchain. It is assumed that a channel is configured and working. The chaincode
is installed on peers and deployed on the channel. The chaincode contains a logic defining a set of
transaction instructions. An example of an approval policy has also been defined for this channel,
indicating that Peer P1 and Peer P2 must approve any transaction.

Or ization 1 or ization 2 Ordering Service

A: Application ’ P1: Peer | | P2: Peer] | P3: Peer] | P4: Peer l | 01: Orderer [ 02: Orderer
= T T

T

proposeTransaction(tx') i |
- | |

I

proposeTransaction(tx')

endorse(tx’)

executeltx')

endorsg(tx')

execute(tx’)

transaction proposal response 1

transaction proposal response 2

tx = assemble(transaction proposal responses)

er geltx)

1
Consensus !
bN = createBlock(tx. ..J
t

sendMessage(bN)
g

i T T i
' | _ sendMessage(bl) ] i
] H H i
' sendMessage(bN) i
0 SEr gel(bn) r
l validate(bN) i
| i
' validatelbN) i
| i
' wvalidate(bN) i
i i I
! validate(bN] i
. i
! < ' i
1 append(bN) ] i
| ) ] |
! append(bN) i :
! I append(bN) | :
! : P ! :
] J i ' |
1 ! ! append{bN) |
i i i i

Figure 12: Hyperledger Fabric Transaction Life-cycle

1. Application A is sending a transaction proposal by invoking a chaincode function to the target
peers to be endorsed.

2. Approving peers simulates the transactions on its state database, verify signature and then exe-
cute the chaincode.
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3. Application A verifies peer signatures approving and inspects proposal responses. Then, he
broadcasts transaction proposal and response within a “transaction message” to the OSN.

4. The OSN receives transactions from all the network, orders them and creates blocks of transac-
tions by channel. Then the transaction blocks are broadcasted to all peers.

5. Peers validate transactions by ensuring that the approval policy is fulfilled.

6. Finally, each peer appends the block to the channel’s chain.

Chaimaa BENABBOU Page 30



ENSEEIHT Internship report

6 The Proposed Agent-based Simulation Model
The usual stack of a blockchain is divided in three levels as shown in Figure 13:

* Decentralized Application: where data/information is stored into the blockchain and are inter-

preted directly.

* Blockchain: where new blocks are appended considering the consensus.

* Network: where nodes communicate with each other (topology, messages, ...) is considered.

DApp
Blockchain

Network

Figure 13: Implementation levels

In our solution, smart contracts are implemented considering the first-level implementation: De-
centralized Application considering the Agent/Environment/role model. The environment will man-
age the nodes and the smart contracts through the use of agents with different roles in order to simulate

the blockchain entities, roles and behaviors.

Agents Smart Contracts
[ 4

i
i ‘\‘\\\‘\\:l'

World State

World State

Blockchain

Environment

Figure 14: Interactions between Nodes and Smart contracts

The aim is to implement the basic functionalities of smart contracts considering Nodes, SmartCon-
tract agents and BlockchainEnvironment (see Figure 14) in light of two architectures: Execute-After

and Execute-First.
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In this model, we consider that Node agents can only communicate with smart contract agents
using tamper resistant messaging via the BlockchainEnvironment, then the smart contract executes
the function called and update the blockchain and the smart contract world state (see Figure 15).

We do not take into account the different steps to execute a transaction (i.e. consensus, endorse-
ment). Instead, we just focus on the update state step.

1 Trm

\J

Figure 15: Communication via Tamper Resistant Messages

6.1 Entities, Roles and Behaviors

Following the methodology represented in Section 4.2.1, we define roles, actions, environments
and agents successively.

Relying on Section 4.2.2:
6.1.1 Roles

* RNode: is an actor role to represent the transactionProposer role

* RSmartContract: is an actor role to represent the contractor role.

6.1.2 Actions

¢ ACCreateSmartContract is an action that enables the environement to create blocks each 10
ticks (1 tick equal 1 min).

* ACDeploySmartContract is an action that enables deploying an instance of a smart contract
agent

* ACCallSmartContract is an action that enables calling smart contracts methods/functions.

* ACExecuteTxAfter is an action that enables executing transactions depending on the execute-
after architecture. In this case, the transactions are executed after creating a block containing
them.

* ACExecuteTxFirst is an action that enables executing transactions depending on the execute-
first architecture. In this case, the transactions are executed instantly and are added to the
memory pool only if they are validated. In our simulation, we consider that a transaction is
valid if it does not throw an exception. In the other case, we do not take it into account.

6.1.3 Environment

* BlockchainEnvironment is an simulated environment that plays the BlockchainProposer, Group-
Manager and BlockchainM Aintainer roles.
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6.1.4 Agents
* Node is a simulated agent that plays the RNode role.

* SmartContract is a simulated agent that plays the RSmartContract role.

A description of the project implementation is detailed in the class diagram in Figure 16.

ieAgentsl | wAgents Y| [ “cagents |
Envlronment: |SmartContract|

T

/f ‘I‘

\

/ \
[ BlockchainEnvironment | [[SmartContractB |
— 1 | ] ]

—— ¥
— /
— —plays —plays [plays plays
— — /
- _ o N

«Roles

«Role»
TransactionProposer

«Roles

ContractorB SRS

4 selectTransactions() : Transaction[] 0O groupSpecification 4 store(Transaction) 4 changeValue()
A createBlock(Block, Transaction(]) : Block A authorize() 4 append(Block) A ¢ ) exe )

4 propose(Block) 0 L BETTER 4 execute(Transaction) —— 4 invokeAnotherSmartContract()

«Roles
BlockchainProposer BleckchainMaintainer

GroupManager

4 createTransaction
4 propose(Transaction)

Figure 16: Smart Contract Class Diagram

6.2 Execute-After architecture

In this architecture, the BlockchainEnvironment creates blocks each 10 ticks and then execute the
transactions in the block.

Reflection API

To invoke the SmartContract methods, we use Reflection API, a java class that enables examining
and modifying the structure and behavior of a class.
The methods used for our project are in Table 4.

Method Description

public Object newlnstance() throws InstantiationException, Ille- | creates new instance.
galAccessException

public Method getDeclaredMethod(String name,Class[] parame- | returns the method class in-
terTypes) throws NoSuchMethodException, SecurityException stance.

public Mehod Invoke(Object, Object[]) thraws TargetException, | calls the method represented by
ArgumentException, TargetInvocationException, MethodAcces- | the current instance, according
sException to the parameters specified.

Table 4: Reflection API methods

Deployment workflow
Figure 17 demonstrates the lifecycle of deploying the smartContractA:
* The Client node:

— Constructs the payload:
scCall = createSmartContractCall(SmartContractA.class, ”deploy”, null)

— Creates the transaction :
tx = new Transaction(node, smartContractA, scCall)
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— Creates the message proposal:
proposeMsg = createProposeessage(node,smartContractA, tx)

— Sends the proposeMsg to the Blockchain Environment
* The Blockchain Environment:

— Stores the proposeMsg payload in the memoryPool
— Each 10 ticks :
* Creates a new block by selecting the transactions from the memoryPool, creating a
new block and adding it to the blockchain.
% After the creation of the block, for each transaction in the block:
- Recover the scCallRequest,the scClass, scMethodTolnvoke, the nodeAddress
- If the scMethodTolnvoke = deploy”, SmartContractA is deployed and its address
is returned to the client node.

Deployment of a Smart Contract

be: Blockchain Environment

scCall=createSmartContractCall(
SmartContract.class,"deploy”, null)

tx=createTransaction(scCall,
beAddress)

proposeMsg=createProposeMessage(tx)

proposeMsg

> G

store(proposeMsg.getPayload()) | Store the tx inside the memory pool! H

Regularly / [For each new block]

Create a new block /

txs = selectTransactions(memoryPoal)

newBlock = new Block(blockNumber++, newBlock: Block
prevBlockHashCode timestamp,txs) -

>

blockTree append(newBlock)

remeveFromMemoryPool(txs)

1

Execute txs /

txs = getTransactions()

some timg Igter

loop / [for each tx]

scCallRequest = tx.getPayload().getValue()

scClass = scCallRequest.getClazz()

il

scMethodTolnvoke = scCallRequest.getMethodTelnvoke()

il

nodeAddress = proposeMsg.sender{)

il

if / [scMethodTolnvoke = "deploy"]

sc = deploy(timestamp, scClass, nodeAddress) sc: SmartContractA

-
-1

<<scAddress=> Yy

Figure 17: Smart Contract deployment workflow : UML Diagram
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Call methods workflow

The UML diagram in Figure 18 demonstrates the lifecycle of invoking a smart contract methods.

¢ The Client node:

Contructs the call: scCall = createSmartContractCall(SmartContractA.class, “deploy”,
null)

Creates the transaction : tx = createTransaction(scCall, be Address)

Creates the message proposal: proposeMsg = createProposeessage(tx)

send the proposeMsg to the Blockchain Environment
* The Blockchain Environment:

— Stores the proposeMsg payload in the memoryPool
— Each 10 ticks :

% Creates a new block by selecting the transactions from the memoryPool and adding it
to the blockchain.

% After the creation of the block, for each transaction in the block:

- Recover the scCallRequest, scClass, scMethodTolnvoke, scMethodArgs and the
receiver.

- If the scMethodTolnvoke != "deploy”, we invoke the smartContract method.
* The SmartContractA executes the method called.
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Executing a Smart Contract method
(Execute-After)

be: Blockchain Environment sc: SmartContractA

scCall=createSmartContractCall( H H

SmartContract class,methodTelnvoke, arguments) !

tx=createTransaction(scCall. H
beAddress) ! !

proposeMsg=createProposeMessage(tx)

proposeMsg

store(proposeMsg.getPayload()) ‘ Store the tx inside the memory pool! Iﬁ

Regularly / [For each new block]

Create a new block /J

txs = selectTransactions{memoryPool)

newBlock = new Block(blockNumber++, newBlock: Block
prevBlockHashCode.timestamp.txs)

blockTree append(newBlock)

removeFromMemoryPool(txs)

Execute txs

txs = getTransactions()

I
loop )/ [for each tx]

scCallRequest = tx.getPayload() getvalue()
scClass = scCallRequest.getClazz()

scMethodTolnvoke = scCallRequest.getMethodTolnvoke() i i

il

receiver = propeseMsg.receiver()
I I

1

scMethodArgs = scCallRequest.getArguments() ‘ Using Reflection API to invoke the smart contract method! Iﬁ

i

if scMethodTolnvoke !'= “deploy” / | ]
[T

alt ' [scMethodArgs != null]

method = scClass getDeclaredMethod(scMethodTolnvoke, String.class) |
I I

method.invoke(receiver, scMethodArgs)

| method(scMethodArgs)

I '
[s¢MethodArgs = null] '
methed = scClass getDeclaredMethed(scMethodTolnvoke) |
I I
method.invoke(receiver) i
| | method()
I

Figure 18: Smart Contract methods workflow : UML Diagram

6.3 Execute-First architecture (Hyperledger Fabric blockchain)

Considering the Hyperledger Fabric architecture, transaction should be executed instantly before
creating blocks. This means that the transaction is first executed then validated. If it is valid, we add it
to the memoryPool, if not, we do nothing. In our simulation, to represent the endorsement policy, we
consider that a transaction is valid if it does not throw an exception and invalid if it does.

In our simulation, to imitate this behavior, two solutions are possible:

* Create a method that enables returning to the last state before the transaction is executed in the
case of non validity.

* Create a copy of the same smart contract, execute the transaction considering the copy, vali-
dating the result. If the transaction is approved, we execute it considering the original smart
contract and then add it to the memoryPool.
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In our implementation, we take into account the second solution as demonstrated in Figure 19

Executing a Smart Contract method
(Execute-First)

be: Blockchain Environment sc: SmartContractA
scCall=createSmartContractCall(

SmartContract class, methodTolnvoke, arguments)

tx=createTransaction(scCall,
beAddress)

reatePropose )

1B

proposeMsg

scCallRequest = tx.getPayload().getValue()

i

scClass = scCallRequest getClazz()

1

scMethodTolnvoke = scCallRequest getMethodTolnvoke()

i

receiver = proposeMsg.receiver()

i

scMethodArgs = scCallRequest.getArguments()

i

sc' = clone()

| createCopyl) | sc': SmartContractA

if scl

MethodToinvoke = "deploy” J

[
alt ] [scMethodArgs '= null]

method = scClass getDeclaredMethod(scMethodTolnvoke, String.class)

method.invoke(receiver, scMethodArgs) ‘ Using Reflection API to invoke the smart contract method! H

method(scMethodArgs)
isValidated?
method(scMethodArgs)
e
storelproposetsg.getPayload)) [grore the tx inside the memory poolt H
gs = null]
method = scClass getDeclaredMethod(scMethodTolnvoke)
method.inveke(receiver)
method()

| Jsvalidated?

[ ait J [if isvalidated]

method()
<

store(proposeMsg.getPayload())

Create a block ) [For each new blockl

txs = selectTransactions{memoryPool)

newBlock = new Block{blockNumber-+-+. newBlock: Block
prevBlockHashCode timestamp.txs)

blockTree append(newElock)

removeFromMemoryPool(txs)

Figure 19: Smart contracts for Hyperledger Fabric blockchain
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7 Use Case: An Industrial Prototype of Trusted Energy Performance
Contracts

The purpose of the EPC [18] is to guarantee a lasting improvement in the energy efficiency of an
existing building or group of buildings. It engages a contractor to design and deliver energy efficiency
measures in order to improve energy efficiency by the means of reducing energy consumption. In this
context, the objective is to evaluate the relevance of blockchain technologies using smart contracts to
overcome the technical limitations mentioned.

The use case is implemented using the simulation model proposed considering the Execute-First
architecture to simulate Hyperledger Fabric blockchain.

7.1 Simulations

In this study, we consider an existing agent-based simulator in the LICIA based on an Agent/Environment/Role
model: Multi Agent eXperimenter (MAX), a multi-agents platform designed to power blockchain ap-
plications based on Madkit*’,

7.1.1 Multi Agent eXperimenter (MAX)
MAX uses two key concepts:
* Agent: autonomous entity with its own knowledge, preferences and behaviors.
» Environment: where agents are evolving.

Agents can observe and interact with the environment (Figure 20).

%%%%
- I

Figure 20: Representation of agents in an environment

Environment

To represent complex agent organizations, MAX is using the Agent/Environment/Role paradigm.
Roles can be viewed as tags: they represents capabilities of an agent. Each agent can play different
roles in an environment (Figure 21).

“OMAdKit, http://www.madkit .net/madkit/
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Agent Agent

Agent

Environment

Figure 21: Representation of agents playing roles in an environment

The different agents defined by MAX are:

» SimulatedAgent is the base class of user-defined agents. It comes with basic functionalities and
works by executing actions according to a Plan used to describe what an agent will do and
when.

* SimulatedEnvironment is the base class to represent the Environment, which is also an Agent in
MAX.

* SchedulerAgent is the agent responsible of scheduling and executing all actions in the simula-
tion.

In such simulation, we use a Context, the agent’s memory given a particular environment. The
first time an agent joins an environment, the environment creates a Context for that agent. It then adds
it to the list of contexts the agent already have. The notion of Plan used enables storing the actions of
agents to run associated to a certain event type and schedule them.

7.1.2 Implementation

In this use case, the roles, actions and environment remain the same as implemented. What differs
is the number of agents.

* We consider four smart contracts (Figure 22):

I<Agents) | «Agent» | T cAgent» |
I Node ! iEnvironment! |SmartContracte=t

[ ez t----=- 4 — —_—

[MetecFrance | [ BlockchainEnvironment | [ PredictorSC | | DataQualifiersc | ‘AggregatorSC
[ L | |
|
_ i _ ‘.
plays Plays Plays /’/W/V/Hay; |plays plays plays plays
— | —
l o — l
| _— Y \ \
sy <Roles i «Roles «Roles ] N «Roles
BlockchainMaintainer BlockchainProposer «Roler DataQualifier ] «Role» Aggregator
We e : Block: . B PR Predictor = pos—r validator S s
4 store(Transaction) e 4 selectTransactions() : Transaction(] B —— a ) S, A ;
:”:"ﬂi’ﬁ;;z:ggw 4 append|(Block) A createBlock(Block, Transaction[]) - Block A callMethod() A executeVavlue() 1 Ac () A exec )
B2 A execute(Transaction) A propose(Block) Ain ntract() | a ntract))

Figure 22: EPC diagram
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— DataQualifier has the responsibility of qualifying the hourly data samples coming from
“authorized sources”: Veolia, Meteo France and Client by calling the Validator smart
contract. To do so, it verifies whether the data samples are inside the predefined range (
temperature values between -30°and 60°, humidity values between 0% and 100%, pressure
values between 850bar and 1060bar and consumption values higher than or equal to OkW).
If it is not the case it replaces the sample with the closest boundary value. Each hour, it
proceeds a “voting algorithm” considering a degree of “reliability” as follows:

Meteo France

Client Veolia

!

23°

Closest group (wrt the tolerance)
of two is chosen

23° more reliable - 23.8°

R=7

o divergent
23° o8

«—

Closest group (wrt the tolerance)
of two is chosen

25° 25,2°

|

25,1° R=6

Figure 23: Voting Algorithm

% Group the sources into subgroups of agreement between them wrt close tolerance.
* Select the subgroup with the highest weight.
x Compute the qualified value as the average of the source(s) with the greatest weight

within the subgroup.

x Compute the reliability as the sum of the votes of the chosen group.

At end of the day, the DataQualifier contract passes all the hourly qualified samples to the
Predictor contract to predict the daily saving.

— Predictor predicts the daily saving using the qualified daily wrt a certain predetermined
algorithm provided. The output is then passed to the Aggregator smart contract.

— Aggregator aggregates daily saving as monthly savings by simply adding it to the the total
saving. At end of the month, the contract calculates the final monthly saving in kW.

— Validator validates static variables of the client building and the monthly saving.

¢ We consider four nodes:

Client

Veolia

MeteoFrance
ClientMeter

7.2 The Daily Prediction Scenario:

The authorized sources send their hourly samples during a month, and a monthly saving is cal-
culated by using the calculated daily predictions that are calculated by using qualified daily samples

(Figure 24).
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More specifically, the EPC scenario is as follows:

* Each hour, Client, Veolia and Meteo France provide their hourly samples to the DataQualifier
smart contract. It then checks and validates the hourly samples.

* Each end of the day, ClientMeter provides the real consumption value to DataQualifier contract.

* Each end of the day, DataQualifier contract launch the daily qualification process by calling the
predictor to calculate the daily saving by applying the Veolia algorithm to compute the saving
and sends it to the Aggregator contract that will accumulate/add it to the total saving made.

* At the end of the month, the Aggregaror contract passes the monthly saving to the Validator
contract who will decide if a saving was made or not.

Prediction Scenario

I c: Client | |v: Veolia | | m: MeteoFrance I I cm: ClientMeter | qu: Data Qualifier p: Predictorl |v: Validatorl [a: Aggregator
T T T T T T T T
loop [each month] T T
———" ) | !
loop [each day] ' '

loop / [each hour] ' i
) ! I

addHour\ySaImple() i !

: addHourIySamplé()

] addHourlySample()

midnightProcess J

! calculateQualifiedDailySamples()

I

]

I

I

I

I

I

i

i

|

1 I

addDailyConsumption() _' :
e

.

T

I

i

I

i

I

i

I

i

|

| predictDaily Consumption()
| addDailySaving(

)

! cleanHourlySamples()

! validateMonthlySaving()
) '

! getPredictedDailySaving() '
I L AL RN

|
i

i 1 ' i
' ' validate()
|

| monthlySaying

Figure 24: The Daily Scenario

7.3 Results

While launching the monthly scenario, we verified that contracts are correctly called and each
action is executed at the fixed tick as shown in Figures 25, 26, 27.
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// Create plan with RNode Role role
final Plan<Mode> planToCreateSC = new Plan<>() {

@0verride

public List<ActionActivator<Node»> getInitialPlan() {

return Arrays.aslist(
new ActionActivator<>(ActivationScheduleFactory.ONE_SHOT_AT_STARTUP,
new ACTakeRole<>(Organization.BLOCKCHAIN_ENVIRONMENT.toString(), RNode.class,
null)),

// Deploy Data Qualifier contract at tick zero
new ActionActivator<>(ActivationScheduleFactory.ONE_SHOT_AT_ONE,
new ACDeploySCEPC<Node>(Organization.BLOCKCHAIN_ENVIRONMENT.toString(),
RNode.class, null)),

// Read data samples for excel fill
new ActionActivator<>(ActivationScheduleFactory.createOneTime(BigDecimal.valueOf(2)),
new ACCallSCEPC<MNode>(Organization.BLOCKCHAIN_ENVIRONMENT .toString(),
RNode.class, null, "readDataFileFor3@Days", null)),
// Compute the daily saving
new ActionActivator<>(
ActivationScheduleFactory.createRepeatingFinitely(BigDecimal.valueOf(12 + 25),
BigDecimal.valueOf(24 * 31), BigDecimal.valueOf(24)),
new ACCallSCEPC<MNode>(Organization.BLOCKCHAIN_ENVIRONMENT .toString(),
RNode.class, null, "midnightProcess", null)),

// At the end of the month, compute the monthly saving and validate it
new ActionActivator<>(
ActivationScheduleFactory.createOneTime(BigDecimal.valueOf (13 + 24 * 31)),
new ACCallSCEPC<MNode>(Organization.BLOCKCHAIN_ENVIRONMENT .toString(),
RNode.class, null, "validateMonthlySaving", null))
)5

1

timeOracle = new Node(planToCreateSC);
agents.add(timeOracle);

Figure 25: Time Plan
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// Create plan with RNode Role role
Plan<Node> planfForfuthorizedSources = new Plan<>() {

@0verride
public List<ActionActivator<Node>> getInitialPlan() {

return Arrays.aslist(
new ActionActivator<>(ActivationScheduleFactory.ONE_SHOT_AT_STARTUP,
new ACTakeRole<>(Organization.BLOCKCHAIN_ ENVIRONMENT.toString(), RNode.class,

null)),

// Veolia, Meteo France and Client should provide samples each hour/tick

new ActionActivator<>(
ActivationScheduleFactory.createRepeatingFinitely(BigDecimal.value0f(12),

BigDecimal.valueOf (24 * 31), BigDecimal.ONE),
new ACAddSamples<Node>(Organization.BLOCKCHAIN_ENVIRONMENT.toString(),
RNode.class, null, "addAuthorisedDataSample", "VEOLIA")));

s

veolia = new Node(planForAuthorizedSources);
agents.add(veolia);

planForAuthorizedSources = new Plan<>() {
@0verride
public List<ActionActivator<Node>> getInitialPlan() {

return Arrays.aslist(
new ActionActivator<>(ActivationScheduleFactory.ONE_SHOT_AT_STARTUP,
new ACTakeRole<>(Organization.BLOCKCHAIN_ ENVIRONMENT.toString(), RNode.class,

null)),

// Veolia, Meteo France and Client should provide samples each hour/tick

new ActionActivator<>(
ActivationScheduleFactory.createRepeatingFinitely(BigDecimal.value0f(12),

BigDecimal.valueOf (24 * 31), BigDecimal.ONE),
new ACAddSamples<Node>(Organization.BLOCKCHAIN_ENVIRONMENT.toString(),
RNode.class, null, "addAuthorisedDataSample"”, "METEOFRANCE"}));

¥
meteoFrance = new Node(planForAuthorizedSources);

agents.add(meteoFrance);

Figure 26: Veolia and Meteo France Plan
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planForfuthorizedSources = new Plan<>() {
@0verride
public List<ActionActivator<Node>> getInitialPlan() {
return Arrays.aslist(
new ActionActivator<>(ActivationScheduleFactory.ONE_SHOT_AT_STARTUP,
new ACTakeRole<>(Organization.BLOCKCHAIN_ENVIRONMENT.toString(), RMode.class,
null)),

// Veolia, Meteo France and Client should provide samples each hour/tick
new ActionActivator<>(
ActivationScheduleFactory.createRepeatingFinitely(BigDecimal.value0f(12),
BigDecimal.valueOf (24 * 31), BigDecimal.ONE),
new ACAddSamples<Node>(Organization.BLOCKCHAIN_ENVIRONMENT.toString(),
RNode.class, null, "addAuthorisedDataSample™, "CLIENT")));

s

client = new Node(planForAuthorizedSources);
agents.add(client);

final Plan<Node> planClientMeter = new Plan<>() {
@0verride
public List<ActionActivator<Node>> getInitialPlan() {
return Arrays.aslist(
new ActionActivator<>(ActivationScheduleFactory.ONE_SHOT_AT_STARTUP,
new ACTakeRole<>(Organization.BLOCKCHAIN_ENVIRONMENT.toString(), RMode.class,
null)),
// Client Meter should provide samples each day at exactly 23:59 (each 24 ticks)
new ActionActivator<>(
ActivationScheduleFactory.createRepeatingFinitely(BigDecimal.value0f(13 + 24),
BigDecimal.valueOf (24 * 31), BigDecimal.valueOf(24)),
new ACAddSamples<Node>(Organization.BLOCKCHAIN_ENVIRONMENT.toString(),
RNode.class, null, "addClientMeterConsumption”, null})));
B
i
clientMeter = new Node(planClientMeter);
agents.add(clientMeter);

Figure 27: Client and Client Meter Plan

When running the scenario considering the monthly data provided by Veolia, MeteoFrance, Client
and ClientMeter, we have the same results with the two architectures.

The difference is when we give an inappropriate value to the DataQualifier (i.e. a null value). In
the case of the Execute-After architecture, an exception is thrown and the execution of the scenario is
stopped.

. 15 more
java.lang.reflect.InvocationTargetException
at jdk.internal.reflect.GeneratedMethodAccessorl.invoke(Unknown Source)
at java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.base/java.lang.reflect.Method.invoke(Method. java:564)
at max.model.ledger.smartcontract.env.BlockchainEnvironment.callSmartContractMethod(BlockchainEnvironment.java:182’
at max.model.ledger.smartcontract.action.ACExecuteTxAfter.execute (ACExecuteTxAfter. java:54)
at max.core.scheduling.ActionActivator.execute(ActionActivator.java:118)
at madkit.kernel.Activator.execute(Unknown Source)
at madkit.kernel.Scheduler.executeAndLog(Unknown Source)
at max.core.scheduling.SchedulerAgent.executeAndReschedule(SchedulerAgent. java:195)
at max.core.scheduling.SchedulerAgent.doSimulationStep(SchedulerAgent.java:118)
at madkit.kernel.Scheduler.live(Unknown Source)
at madkit.kernel.Agent.living(Unknown Source)
at madkit.kernel.AgentExecutor$2.run(Unknown Source)
at java.base/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:515)
at java.base/java.util.concurrent.FutureTask.run(FutureTask.java:264)
at java.base/java.util.concurrent.ThreadPoolExecutor.runborker(ThreadPoolExecutor.java:1138)
at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor. java:638)
at java.base/java.lang.Thread.run(Thread.java:832)
laused by: java.lang.NullPointerException: Cannot invoke "java.lang.Double.doubleValue()" because "null" is null
at max.model.ledger.EPCSmartContract.action.DataQualifier.addAuthorisedDataSample(DataQualifier.java:82)
- 18 more

Figure 28: Exception thrown in the case of Execute-After architecture

While using the Execute-First architecture, the exception will also be thrown but once catched, the
execution continues by neglecting the invalid transaction and thus not adding it to the memory pool.
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Validate:
the actual saving is: -2855.7999999999997

Figure 29: Exception thrown in the case of Execute-First architecture

In our use case, detecting vulnerabilities is only managed by handling exceptions. This implemen-
tation allows us at first to simulate the smart contracts considering the different architectures but also
to make a link with the state-of-the-art and to discover/test the smart contracts when exceptions are to
consider.
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8 Conclusion and Prospects

The main purpose of this internship is to provide insights into VV&T of smart contracts to assess
the overall effectiveness of popular security code analysis solutions used to detect common vulner-
abilities. The main motivation behind this work is to contribute to a more secure and trustworthy
Hyperledger Fabric environment.

First, a comprehensive review is conducted on the available VV&T solutions for smart contracts.

The state-of-the-art outlines already exploited vulnerabilities for targeted blockchain and classifies
them based on their severity and test level. It demonstrates that simulators are the more flexible
solution to simulate smart contracts considering the three levels (DApp, Blockchain, Network) and
the degree of control over the system parameters.

Hence, they are non existent simulators when given away the public ones. The only one available,
as far as I found, is a private one developed by a startup. Moreover, Hyperledger smart contracts
VV&T solutions are very few compared to other blockchains. To cover this point, we evolved an
Agent/Environment/Role simulator to imitate smart contracts considering the DApp level for blockchain
agnostic and then focus on the Hyperledger Fabric blockchain (considering the Execute-After and
Execute-First architectures respectively).

To conclude this internship report and validate the model developed, the highlight that smart con-
tracts are promising applications is demonstrated through the EPC use case developed by the mean of
MAX, the agent-based simulator developed by the LICIA Lab.

To go even further, the project could be extended considering the blockchain and system levels
to have more control and visibility of manipulating the blockchain parameters. In order to improve
the smart contract process, setting up a simulation that detects a large kind of common vulnerabilities
could be a better and significant approach to secure smart contracts before the deployment in the main
networks.
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Appendix

Vulnerabilities and attacks

Vulnerabilities

Description

Integer overflow/underflow (IOU)

Occurs when performing operations with value limitations, caus-
ing an overﬂow (resp. underflow)

Unchecked Send Bug

Referred to as “send instead of transfer. "Transfer” automatically
checks for the return value, whereas using ’send’ you have to
manually check for the return value, and %xow an exception if
the sendy fails. Not doing so, can lead to an attacker executing
malicious code into the contract and draining the balance.

Mishandled Exceptions

Occurs because of the the interaction between contracts. If ex-
ceptions are not handled correctly and the transactions are re-
verted, the user will be unaware of ether lost

Gas costly pattern

Occurs when a smart contract execution consumes more gas un-
necessarily

tx.origin

Concerns a global blockchain variable that refers to the address
of the account sending the transaction. When it is used for au-
thorization, contracts may be compromised by phishing attacks

Reentrency

Occurs when a smart contract function is being executed concur-
rently for another smart contracts through an outer call before the
first function call was ended.

Front Running

Occurs when a user of the network react to an transaction before
it is included in the next block.

Timestamp dependence (TD)

Occurs when a miner manipulate the block timestamp, thus
changing the output of the contract to his own benefit.

Transaction ordering dependency (TOD)

Occurs when a miner decides an inconsistent transactions order
with respect to the time of invocations, leading to malicious be-
haviors

Global State Variables

Variables are only global to a single peer and are not tracked
on the ledger. Which can lead to a divergence between the peer
global Varlable states.

Call to the unknown

Occurs when a function invocation or an ether transfer unexpect-
edly invokes the fallback function of the callee/recipient.

Table 5: Smart Contract vulnerabilities

Attacks

Description

Limiting progress attacks

Occurs when a malicious user slow down the entire protocol by
delaying the broadcast of the first message that enables the up-
date. Thus, no progress can be made.

DAO attack

Occurs when the malicious user asks the smart contract to pro-
vide the money back multiple times before the smart contract
could update the token balance.

DoS attack

Implies Ieaving contracts dysfunctional for some time or even

Eermanently. It occurs when the attacker overwhelms the system
y large amounts of transactions that the blockchain is unable to

handle or transmits bugs that exploit the blockcahin flaws .

Table 6: Smart Contract Attacks

Game of Life

In the late 1960s, the mathematician John Conway invented a virtual mathematical machine that
performs actions based on certain rules [31]. It is a zero-player game, meaning that its evolution is
determined by its initial state, requiring no further input. One interacts with the Game of Life by
creating an initial configuration and observing how it evolves. Each cell takes two states, live and
dead. The cells’ states are updated simultaneously and in discrete time.

The implementation was done following the agent based model (refer to the class diagram in

Figure 30):
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Figure 30: Game of life Class Diagram

Entities, Roles and Behaviors:
The model is composed of a GridEnvironment, GridContext, IObservedCells and Cells.

* GridEnvironment constructs environment for the game of life, register the Cell agents and set
up the visualization of the grid. It also enables counting the number of live neighbors of each
agent cell.

* GridContext enables the cell to update its state according to three defined actions:

— ACRequestNeighbors: is executed at tick one to register the neighbors of each cell in its
context.

— ACCalculateNumberOfLiveNeighbours: count the number of live neighbors considering
the state of the IObservedCells.

— ACUpdateState: change the cell state according to four rules:

* Any living cell with fewer than two live neighbors dies (underpopulation).
* Any living cell with four or more neighbors die (overpopulation).
Any cell with exactly two neighbors remain in its state.

*

Any cell with exactly three neighbors become/remain alive.

*

* Cell agent plays RCell role. Each agent in the grid has a RCell role.

» [ObservedCells is a cell interface that enables other agents to observe the cell state without
accessing to its context.

* GameOfLifeExperimenter plays the RExperimenter role. It initializes a grid of size 50x50 and
enables the agent cells with RCell role and ACRequestNeighbors, ACCalculateNumberOfLiveNeigh-
bors and ACUpdateState actions. It is responsible for running a simulation and initializing cell
behaviors randomly and with a certain density. The life cycle of this experimentation is as
follows:

— First, the scheduler requests the neighbors of each cell agent,

— Then the scheduler calculate the number of live neighbors by observing their state,
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— After, the scheduler update the cell agent state according the initial state and to states
progress.

— These steps are repeated until the end of the simulation.

After running multiple simulations, we found some recurring shapes/patterns: blocks, gliders,
beehives and blinkers (see Figure 31).

(a) (b) (© (d)

Figure 31: Recurrent shapes/patterns
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