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So Thou be sweet, let life run bitterly;
So Thou be pleased, let men be wroth with me;
So all things flourish between me and Thee,
Let all between me and the world in ruins be.

A Sufi poem.
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Abstract

Bitcoin is a decentralized payment protocol that operates on a peer-to-peer
network. Its functionality is maintained by certain nodes called miners who
use their computing powers to validate and record transactions. In return,
miners are rewarded by the protocol.

Reward allocation in Bitcoin is a random process with a large variance. To
gain their rewards in a steady, profitable manner, miners tend to combine
their computing powers and form mining pools. This leads to centralization
of the computing power in the Bitcoin network. Consequences of this
might be severe, in an extreme case, the entire network can be controlled
by a single entity. The Fruitchain protocol aims to alleviate this threat by
modifying the mining process of Bitcoin and introducing a new rewarding
mechanism.

In this work, we attempt to capture the differences between rewarding
mechanisms of Fruitchain and Bitcoin in a formal manner. Concretely, we
compare the protocols against two properties that affect miners’ earnings
and behaviors: fairness and profitability. Broadly, in this context, fairness is
protocol’s ability to distribute rewards in proportion to miners’ computing
power. On the other hand, profitability reflects a miner’s gain over a given
period of time.

To compare the protocols, we first explicitly define fairness and profitabil-
ity under an execution model. We then show Bitcoin and Fruitchain are
equivalent in terms of fairness and Fruitchain is more profitable than Bit-
coin. Finally, we validate our results and illustrate their implications for
miners through simulations.
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Chapter 1

Introduction

Bitcoin [1] is an online payment protocol that operates on a peer-to-peer
network without a trusted central authority. Transactions are exchanged
directly between the users and are recorded in a public, append-only, de-
centralized ledger called the blockchain.

Recording transactions is only possible through a process called mining
which requires computational effort. There exist certain nodes called min-
ers who devote their computational resources to this task. As compensa-
tion, the protocol rewards miners in bitcoins, the currency of the protocol1.

The rewarding mechanism of Bitcoin suffers from few problems. In par-
ticular, expected time and variance of receiving payouts can be quite large,
especially for miners with relatively low computing power. The Fruitchain
protocol [2] attempts to solve this by modifying the mining process and
the rewarding mechanism of Bitcoin.

In this work, we attempt to capture and illustrate the differences between
Fruitchain and Bitcoin in terms of their rewarding mechanisms.

1.1 Motivations

The difficulty of the mining process increases as the total computing power
increases over the Bitcoin network. This is necessary to maintain the se-

1Bitcoin with a capital ’B’ refers to the protocol and bitcoin with a lowercase ’b’ refers
to its currency. We shorten the currency by BTC in the rest of this paper.
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curity of Bitcoin, however, as an undesired consequence, it has become
unprofitable to participate in the mining process as a solo miner.

To participate in the mining process in a profitable manner, miners tend
to combine their computing powers and form mining pools [3]. These
pools are usually governed by managers who can use computing powers
of pool’s participants at their will. This introduces a degree of centraliza-
tion to the network and makes it more susceptible to certain attacks such
as the “51% Attack” [4] in which a collaborating majority can rewrite the
entire history of transactions. As of February 2018, the total computing
power of the network is distributed over only about 14 pools [5].

The mining process and the rewarding mechanism in Fruitchain are de-
signed in a way such that miners can make steady profits without needing
mining pools. A detailed study of the protocol seems to be lacking in
the literature (other than its authors’), we aim to fill this gap with our
work by highlighting its differences from Bitcoin. Concretely, we show
the differences between Fruitchain and Bitcoin in terms of their rewarding
mechanisms. To this end, we compare the protocols against two prop-
erties: fairness and profitability, that we believe are important to miners.
We explicitly define these properties under an execution model. We then
establish our results in terms of protocols’ abilities to satisfy these prop-
erties. Finally, we validate our results and illustrate their effects by doing
simulations.

1.2 Related work

The Fruitchain protocol is first introduced in [2] and details regarding
its rewarding mechanism are elaborated in [6]2. It draws ideas from the
decentralized mining pool P2Pool [7].

It is shown that the existence of mining pools has an effect on the fair
distribution of rewards in the Bitcoin network [8].

Eyal et al. [9] show rewarding mechanism of Bitcoin is not incentive com-
patible by introducing and analyzing a deviant mining strategy called
selfish-mining. Work of Sapirshtein et al. [10] further analyzes and opti-
mizes this strategy.

2This work, as of February 2018, is unpublished. We obtained the paper by communi-
cating with its authors.
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Finally, Carlsten et al. [11] illustrate that Bitcoin instabilizes once the fixed
reward of the mining process runs out.

1.3 Structure of the thesis

The rest of the paper is structured as follows. In Chapter 2, we give the
necessary background on Bitcoin and Fruitchain. In Chapter 3, we present
the execution model that we use in our analysis and define fairness and
profitability formally. We then compare Fruitchain and Bitcoin according
to these properties and show each protocol’s performance in terms of sat-
isfying them. In Chapter 4, we validate our results and illustrate their
implications on miners through simulations. We also do an experimental
comparison of Bitcoin and Fruitchain under the selfish-mining attack in this
Chapter. Finally, in Chapter 5, we provide some concluding remarks.
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Chapter 2

Background

In this chapter, we provide the necessary background on Bitcoin and
Fruitchain.

2.1 Bitcoin

We explain the Bitcoin protocol by first giving a brief overview. We then
explain the related structures in details.

2.1.1 Overview

The nodes exchange currency over the Bitcoin network by broadcasting
transactions. Certain nodes validate and include transactions in structures
called blocks and blocks are stored in a public, append-only, decentral-
ized ledger called the blockchain. The blockchain is essentially a sequence
of blocks and a transaction is considered to be recorded once the block
containing it is stored in the blockchain.

Each node maintains a local copy of the blockchain1. By collectively main-
taining the blockchain, nodes agree on the order of transactions. This
makes calculating the balance of every participant and verifying the va-
lidity of a transaction possible by querying the data on the blockchain. In

1In reality, some nodes only store a part of the chain. We assume every node contains
the entire chain to simplify our explanations.
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particular, this makes double-spend attacks [12] detectable under a decen-
tralized setting which is, in fact, the main novelty of the Bitcoin protocol.

A node must engage in a process called mining to record transactions. Such
nodes are called miners and every node in the network can be a miner at
his will. Briefly, miners first validate and store transactions in blocks and
then they attempt to solve a computational puzzle called “Proof-of-Work”
(PoW) [13]. When a miner solves the PoW, he gets the right to extend the
blockchain with his block. Concretely, upon solving the puzzle, a miner
appends his block to his chain and then broadcast it to the network. Other
nodes then deliver the block, validate it and append it to their own chains.
Through this process, the network reaches to an agreement on the order of
blocks and hence, on the order of transactions. To encourage participation
in mining, the protocol rewards miners in BTC.

It is possible to have different miners solving the PoW and broadcast-
ing their blocks simultaneously. This causes disagreement on the order
of blocks. However, the protocol is designed in a way such that those
disagreements are eventually solved as we explain in Section 2.1.3.

2.1.2 Transactions

Transactions are means to exchange currency over the Bitcoin network. The
most basic transaction contains a single input and a single output. Con-
ceptually, the input spends some amount from a previous transaction and
the output specifies the new owner of this amount

An input refers to the output of a previous transaction to claim the amount
denoted by it, i.e. input “spends” the output it references. It is then
possible to send this amount to an address by creating a new output.

Technically, an input has a signature and a reference field and an output
has a value and a public key field. The value field of an output denotes
the amount it contains in BTC. Public keys essentially play the role of
addresses in this setting and thus, also referred as addresses.

Only the valid transactions should be recorded in the blockchain. Bitcoin
dictates the following validation rules for a transaction2.

2Real validation rules of Bitcoin are slightly more complex [14]. We simplify them in
our explanation to highlight the related parts.
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(i) Its input references to an unspent transaction output (UTXO).

(ii) Its input’s signature is valid under the public key of the output it
references.

(iii) The value field of its output is equal or less than the amount its input
spends.

By maintaining a set of unspent transactions, the UTXO pool [15], miners
ensure these conditions are met and discard the invalid transactions. As
an optimization, transactions usually keep a list of inputs and a list of
outputs.

Figure 2.1: A simplified view of Bitcoin transactions [16].

In Figure 2.1, Transaction C claims a total of 0.008 BTC by referring to
outputs from transactions A and B. It then sends 0.007 BTC to some ad-
dresses with two new outputs. The remaining 0.001 BTC is called transac-
tion fee and left as a reward to miner who records this transaction in the
blockchain.

2.1.3 Blocks, the Mining Process and the Blockchain

As mentioned before, transactions are not recorded directly in the blockchain
but rather, they are included in structures called blocks. Blocks are then
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chained together, creating the blockchain. By agreeing on the order blocks
in the blockchain, nodes reach an agreement on the order of transactions.

Figure 2.2: A simplified view of the blockchain. Every block contains a
reference to the previous block [17].

A block consists of two parts: header and body. In its body, the block
contains its set of transactions as a Merkle Hash Tree [18]. In its header, it
contains the root of the tree, a reference to the previous block in the chain
and a nonce value.

If miners arbitrarily create blocks, maintaining agreement on the blockchain
would not be possible. Thus, the protocol needs to select a miner to extend
the blockchain, one at a time. This is done through a process called (block)
mining.

We first give the validation rules for a block and then explain how (valid)
blocks are created by miners. Basically, a block is considered valid if it
meets the following rules3.

(i) It contains only valid transactions.

(ii) The digest of its header is lower than a certain difficulty target4 when
double hashed under SHA-256 cryptographic hash function.

3Again, see [14] for the complete list of the validation rules.
4This is just a number in the range of the hash function. The higher its value, the easier

to create blocks.
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To create blocks, miners validate and store transactions in a block struc-
ture and set its reference to the last block5 in the blockchain. Then, they
increment block’s nonce and hash block’s header until it meets the validity
rules. As this process requires computational effort, the protocol rewards
miners who create blocks as compensation. This is done through a special
transaction called the coinbase transaction which is contained in every block
by convention. Coinbase transaction rewards the creator of the block by a
fixed amount plus the sum of transaction fees in the block6

It is possible for miners to create blocks simultaneously. In this case, we
have a fork on the blockchain. This temporarily disrupts the agreement on
the order blocks. Protocol rules dictate that miners should try to extend
the branch they first heard. Eventually, a branch becomes longer than the
others and when this happens, miners agree on this branch.

For a miner, the probability of creating a block is roughly proportional to
his hashrate (number of hash calculations per second). Protocol adjusts the
difficulty target such that a block is created roughly in every 10 minutes
in the network, regardless of the total hashrate in it. The reason is to keep
the probability of having forks small and consequently, maintaining the
agreement on the blockchain.

Finally, the longest branch of the blockchain is called as the main chain
and only the transactions contained in it are added to the balance of users.
Blocks that do not reside in the main are called orphan blocks. The very
first block is called as the genesis block.

Figure 2.3: A complete view of the blockchain. Genesis block is in green.
Nodes that are in the main chain are highlighted in black. Orphan blocks are
in purple [19].

5Technically, they can set it to any previous block but that is the default behaviour.
6The “fixed” reward halves roughly in every 4 years. As of 2018, it is 12.5 BTC. When

it runs out, miners will be rewarded only by transaction fees.

11



2.2 Fruitchain

Fruitchain slightly modifies Bitcoin by adding a by-product to the mining
process called fruit. The main idea is to have two different difficulty targets
for blocks and fruits such that fruits are created more often. By designing
a new reward scheme that takes fruits into account, Fruitchain aims to
reduce the expected time and variance of payouts and thus, reducing the
incentive to join mining pools. In particular, through fruits, it aims to
reward miners with low hashrates in a profitable manner.

2.2.1 Overview

Fruitchain mainly functions like Bitcoin. In this section, we explicitly men-
tion the parts in which Fruitchain differs.

As in Bitcoin, miners try to find a solution to the PoW to create blocks.
However, the mining process in Fruitchain might yield a by-product called
fruit. A miner attempts to create a block and a fruit simultaneously by
utilizing the 2-for-1 trick [20]. This means that, for example, the prefix
of digest determines whether fruit mining is successful and the suffix of
digest determines whether block mining is successful. Protocol fixes the
ratio between the fruit difficulty target and the block difficulty target to a
parameter c0 > 17. So, whenever the block difficulty target is adjusted, the
fruit difficulty target is adjusted also to keep their ratio constant.

When a fruit is created, it is broadcast to the network. Just as transactions,
they are included in blocks by miners.

Figure 2.4: The Fruitchain. Empty circles denote fruits [6].

7Remember, the difficulty of mining is inversely proportional to difficulty target.
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Fruits keep a block reference in their headers, like blocks, and the protocol
dictates the following validation rules for a fruit.

(i) The number of blocks between the block containing the fruit and the
one that fruit refers to is at most k− 1.

(ii) The digest of its header is lower than the fruit difficulty target when
double hashed under SHA-256 cryptographic hash function.

The reason for the first point is to prevent fruit withholding for long in-
tervals. A miner can hold his fruits until transaction fees rise above a
certain level. Consequently, he might earn more reward per fruit than
another miner who broadcasts his fruits often. This might affect the fair
distribution of rewards (see Section 2.2.2 for the exact details of rewarding
mechanism).

Further, the validation rules of a block (in addition to Bitcoin’s validation
rules) is as follows.

(i) The fruits that it contains are valid.

(ii) It does not contain any fruit that resides in previous blocks.

Header data of fruits and blocks contain an address field. This is neces-
sary to reward miners under Fruitchain’s reward scheme as we explain in
Section 2.2.2.1. The details of the headers are given in Figure 2.5.

Figure 2.5: Headers in Fruitchain. Freshness field of a valid fruit refers to
one of the k preceding blocks from the block containing the fruit. When a
fruit is created, only the fruit header is broadcast. When a block is created,
fruit header is serialized with the extended header and the combined data
is broadcast [6].
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2.2.2 Reward Scheme

The main idea of Fruitchain’s reward scheme is to reward block creators in
proportion to the number of fruits they collect in their blocks whilst also
rewarding fruit creators. Technically, fruit creators get rewards from their
easier PoW solutions. Thus, in a sense, fruits play the role of ”shares” in
mining pools under a decentralized setting [21].

Basically, protocol keeps a k-length sliding window over blocks
Bi, Bi+1, . . . , Bi+k−1. It then distributes the amount Bi+k has accumulated
(in terms of transaction fees 8 ) to the window after giving a portion of it
directly to the creator of Bi+k. The exact details of the reward scheme is
given in Figure 2.6. For clarity, consider c1 = 1

100 , c2 = 1
10 , c3 = 1

100 (see
Section 2.2.2.6 for an explanation).

• Let x be the amount of transaction fees collected by the block
Bk+1.

• Creator of Bk+1 is directly rewarded by c1x. Reward pool of k-
length window is initialized to R = (1− c1)x.
• Let ti denote the number of fruits contained in block Bi. Every

block contains an ”implicit” fruit that rewards the block creator.
(so, ti ≥ 1).
• Let t = ∑k

i=1 ti denote the total number of fruits in the window.
• Let n0 = R/t be the normal reward per fruit.
• Let d(`) = c3 · (1− l

k−1 ) and let ĉ2( f ) denote the tax fruit f spec-
ifies.
• For each i ∈ {1, 2, . . . , k} :

– For each fruit out of ti fruits that Bi collected:
∗ Let l(`) be the amount of blocks between Bi and the

block referenced by the fruit f , i.e. 0 ≤ `( f ) ≤ k− 1.
∗ Creator of fruit f is rewarded with n0 · (1 − ĉ2( f ) +

d(`( f )))
∗ Creator of block Bi is rewarded with n0 · (ĉ2( f ) −

d(`( f )))

Figure 2.6: Reward scheme of Fruitchain [6].

8Fruitchain considers a setting with no fixed block reward.
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The parameters k, c1, c2, c3 are respectively called window length, direct re-
ward proportion, fruit tax and fruit freshness bonus. We now briefly analyze
them and explain how coinbase transactions are generated.

2.2.2.1 Coinbase Transactions

The total reward of a fruit/block cannot be determined at the time of its
creation as it depends on the window it resides. Due to this, coinbase
transactions cannot be kept in fruits/blocks directly. Instead, when block
Bi+k is created, nodes calculate rewards over the window according to
the reward scheme. Then, coinbase transactions are generated and stored
directly in the UTXO pool. The address of miners are derived from the
header data of their blocks/fruits (see Figure 2.5).

2.2.2.2 Window Length

Window length parameter k effects how long a miner has to wait to get his
total reward from blocks/fruits. Simply, the sliding window has to pass k
times over a block for miners to receive the total reward from a block and
the fruits contained in it. It also affects how should fruit tax be set. As
authors show in [6] and we explain in Section 2.2.2.4, for small k values,
fruit tax should be higher. Due to these two reasons, k should not be too
high or too small.

2.2.2.3 Direct Reward Proportion

Direct reward proportion c1 aims to encourage miners to validate and in-
clude transactions in their blocks. If miners do not receive a direct reward
from their blocks, they might simply avoid the work of validating trans-
actions and create fruits and empty blocks. Under high c1 values, miners
with low hashrates might not be able to sustain their business due to low
fruit reward and under low c1 values, miners might be discouraged to
validate transactions.

15



2.2.2.4 Fruit Tax

Fruit tax c2 aims encourage miners to put fruits of others in their blocks.
Depending on its value, miners might include or exclude fruits of others.
We illustrate this with a simple analysis originally given in [6].
Proposition 1. Let total reward distributed over a window be R and let there be
kc0 fruits in the window. Let M be a miner who has a block in this window with
c0 fruits in it, mined by himself. Let there be x free fruits that were not included
in the window. M would earn less reward by including these fruits in his block
given that they pay the tax c2 < 1/k even if they do not claim any freshness
bonus, i.e. d(`(.)) = 0.

Proof. When M does not include these x fruits, we have n0 = R/kc0. When
he includes them, we have n0,x = R/(kc0 + x). We see that the reward M
earns is given by v = n0c0 in the first case. In the second case, this is
vx = n0,x(kc0 + c2x). Setting v = vx and solving for c2 gives us c2 = 1/k
which implies for c2 < 1/k we have v > vx. So, M gains more reward by
excluding these fruits. �

Miners are free to set their own fruit tax for their fruits by adjusting the
tax field in the fruit header (see Figure 2.5).

2.2.2.5 Fruit Freshness

Validity rules on fruits do not allow prolonged fruit withholding however,
a miner can still hold a fruit he creates for k blocks. If the miner can create
one of these k blocks, he can avoid paying fruit tax to others by including
his fruits in his block. This can cause reward distribution to be skewed in
favor of miners with high hashrates.

To discourage this, fruits are given a freshness bonus, adjusted by param-
eter c3. The closer the distance between the block containing the fruit and
the block that fruit refers to, the higher the bonus. Thus, it can be seen
that this encourages miners to broadcast their fruits as soon as possible to
obtain more freshness bonus.
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2.2.2.6 Adjusting the parameters

Adjusting parameters should be done with care as briefly explained in the
previous sections. In their work [6], authors are particularly concerned
with the case where rewards are earned solely through transaction fees. As
shown in [11], Bitcoin instablizes in this setting due to an attack called “fee
sniping”. Authors tune the parameters such that Fruitchain is sufficiently
resistant to this attack. We omit the details regarding the analysis as we
are not particularly concerned with this attack in our work and just share
the default values they suggest: c1 = 1

100 , c2 = 1
10 , c3 = 1

100 , k = 16.
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Chapter 3

Theoretical Analysis of the
Reward Schemes

In this chapter, we analyze Fruitchain and Bitcoin in terms of their reward
schemes.

We first introduce a simplified model of Fruitchain in Section 3.1. Using
this model, we analyze earnings of miners according to both Bitcoin and
Fruitchain. Simply, we ignore the fruits in blocks when calculating earn-
ings under Bitcoin and allocate the whole amount contained in a block to
its creator. For Fruitchain, we distribute rewards according to its reward
scheme (see Figure 2.6).

After introducing our model, we provide a brief analysis of it in Section
3.2 and then analyze reward properties of Fruitchain, i.e. how much a
miner earns from his fruits/blocks, in Section 3.3.

Finally, we explicitly define our properties, fairness and profitability and
analyze Fruitchain’s and Bitcoin’s performance in terms of satisfying them
in Section 3.4.
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3.1 Execution Model

We consider a round based execution model1 as in Garay et al. [20]. An
execution is denoted by ε(p, p f , r, N) where p and p f are two probability
values such that p f > p (see 3.1 for their purpose), r is an integer that
denotes the length of execution and N is the set of miners. We refer to N
as the network and denote the ratio of p f to p by c0, i.e. c0 =

p f
p .

We model a miner as M = (ID, h) where ID ∈ {1, 2, . . . , |N|} denotes his
unique identifier and 0 < h ≤ 1 denotes his hashrate fraction. We note
that a miner cannot leave the network or change his hashrate during an
execution. All miners share two data structures2: a list of blocks BC and a
set of fruits FS.

We model the blocks as b = (ID, FSb) where ID is the unique identifier of
the miner who created b and FSb is the set of fruits that are contained in
b. The height of a block is its position in BC (indexed by 1) and the length
of BC is the number of blocks in it, denoted by len(BC). The last block in
BC is called as the head of BC.

Also, fruits are modeled as f = (ID, Bh) where ID denotes the same as in
blocks and Bh is the height of the block that f refers to.

At each round, miners are selected by a leader-selection entity S. Briefly,
the flow of a round is as follows.

(i) A round starts by S running the algorithm given in Figure 3.1. S
broadcasts the output of the algorithm to the network.

(ii) The miner identified by FruitLeaderID 6= ⊥ creates a fruit
f = (FruitLeaderID, len(BC)) and sets FS = { f } ∪ FS.

(iii) The miner identified by BlockLeaderID 6= ⊥ creates a block
b = (BlockLeaderID, FS) and sets FS = {}.

(iv) If neither a block nor a fruit is created, i.e. BlockLeaderID = FruitLead-
erID = ⊥ or just a fruit is created, round terminates.

(v) Otherwise, rewards are distributed according to both Bitcoin and
Fruitchain reward schemes. That is, for Bitcoin, block creators get

1Technically, we consider a “round-based, synchronous, no-delay, reliable” model.
2Note that we do not mean replication here. The blockchain is really a shared data

structure in our model which every miner can read and write.
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the whole amount in their blocks and for Fruitchain, rewards are
distributed according to its reward scheme. Each miner keeps track
of how much reward he earns under both schemes simultaneously by
maintaining two local variables, one for Bitcoin and one for Fruitchain.
After distribution of rewards, round terminates.

We note that if both a fruit and a block is created at a round, first fruit set
is updated with the newly created fruit and then the block is created.

We assume rewards are earned only through transaction fees and each
block accumulates a constant amount x in terms fees. We further assume
that every fruit pays the same tax c2. Finally, note that freshness bonus of
every fruit is c3 as they always point to the head of BC (see Section 2.2.2
to recall parameters of Fruitchain).

procedure Select Miners

BlockLeaderID← ⊥
FruitLeaderID← ⊥
r ← Uniform[0, 1), r f ← Uniform[0, 1)
if r < p then

BlockLeaderID←WeightedRandomSelect(N)
if r f < p f then

FruitLeaderID←WeightedRandomSelect(N)
Return BlockLeaderID, FruitLeaderID

Figure 3.1: Miner selection algorithm of S. Algorithm uses two sub-
precudures, Uniform and WeightedRandomSelect. Uniform simply
returns a number within the specified range with uniform probability.
WeightedRandomSelect takes a miner set as its input, does a weighted
random selection over it where weights are the hashrate fractions of
miners and returns a miner ID.

3.2 Brief Analysis of the Model

As can be seen, mining is modeled as a Bernoulli process for each round.
Informally, the network has a probability p of creating a block and has
a probability p f of creating a fruit at each round. When the block/fruit
creation event ticks, its miner is selected by a weighted selection on the set
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of miners where weights are the hashrate fractions. Also, note that p and
p f are independent of miners individual hashrates. This is to capture the
difficulty adjustment of the mining process, i.e. blocks are created roughly
in every 10 minutes in the Bitcoin network regardless of the total hashrate.
Similarly, in our model, blocks are created roughly in every 1

p rounds

and the ratio of p f
p stays constant as this is how mining in Fruitchain is

designed (see Section 2.2.1).

Let M be a miner with hashrate fraction hM. Then, his probability of min-
ing a block at a round is given by phM and his probability of mining a fruit
is given by p f hM. Further, over the rounds, mining is a Binomial process.
For an execution that takes r rounds, the expected number of blocks and
fruits created by M is simply given by phMr and p f hMr, respectively. For
example, under Bitcoin, this means M’s expected gain is phMrx for this ex-
ecution as we assume every block contains an amount of x in transaction
fees and miners get all the fees from the blocks they create under Bitcoin.
Finally, note that the expected total gain of the network is prx for both
Bitcoin and Fruitchain for this execution.

We also note that if we are interested in finding the elapsed number of
rounds between blocks/fruits of M, we can reason to Geometric distri-
bution. So, if R is the elapsed number rounds between blocks of M, we
have R ∼ Geom(phM). This means, in expectation, the number of rounds
between every two block of M is given by E[R] = 1/phM.

3.3 Reward Properties of Fruitchain

Before analyzing the reward schemes in terms of fairness and profitability,
we need to derive formulas for reward properties of Fruitchain, i.e. how
much reward a block/fruit brings to its creator. We make use of the fol-
lowing theorem in our analysis.
Theorem 1. Wald’s Identity. Let N be a random variable assuming positive
integer values. Let Xi be a sequence of i.i.d random variables with E[Xi] = E[X].
Then,

E[
N

∑
i=1

Xi] = E[N] · E[X].

First, we show how many fruits a block contains in expectation to find the
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expected normal reward per fruit (n0 from Figure 2.6).
Lemma 1. Let N be the number of fruits in a block. Then we have, E[N] = c0.

Proof. Let Fi be the number of fruits created in round i. Let R be the
elapsed number between the head of BC at round i and the next block.
We note Fi’s are i.i.d. random variables with F ∼ Bern

(
p f
)

and R ∼
Geom (p) . If we enumerate rounds between subsequent blocks from 1 to
R, we can write N = ∑R

i=1 Fi. Using Theorem 1 gives us E[N] = E[R] · E[F].
Finally, plugging E[R] = 1

p and E[F] = p f yields the result. �

Corollary 1. Let N0 denote the normal reward per fruit which is defined as,

N0 =
Reward distributed over a window

Number of fruits in a window
.

Then we have,

E[N0] =
(1− c1) · x

k · (E[N] + 1)
.

Proof. Reward distributed over every window is simply (1− c1)x. Since
Fruitchain scheme assumes an implicit fruit in each block, we have k ·
(E[N] + 1) fruits in every window3. Applying the definition of N0 yields
the result. �

We can now derive formulas for reward properties.
Lemma 2. Let R f denote the reward of mining a fruit. Then we have,

E[R f ] =
(1− c1)x · (1− c2 + c3)

E[N] + 1
.

Proof. Since fruits always point to the head of BC, we have d(`( f )) = c3
for each fruit f . A fruit gets window reward for k times and in each time,
it is rewarded by E[N0] · (1− c2 + c3). Its total reward is then given by
E[R f ] = k · E[N0] · (1 − c2 + c3). Plugging the value of E[N0] yields the
result. �

Lemma 3. Let Rb denote the reward of mining a block. Then we have,

E[Rb] = c1x +
(1− c1)x
E[N] + 1

·
(

1 + E[N](c2 − c3)
)

.

3Of course, this is in expectation.
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Proof. A block gets the direct reward once and the window reward k times.
Direct reward is simply c1x. Block gains E[N0] for his implicit fruit and
gains E[N0] · (c2 − c3) for each other fruit that it contains. There are E[N]
such fruits and by using Theorem 1, we can see the block gains,

E[N0] + E[N] · E[N0] · (c2 − c3),

for each window reward. Thus, in total we have,

E[Rb] = c1x + k
(

E[N0] + E[N] · E[N0] · (c2 − c3)
)

.

Plugging the value of E[N0] and simplifying the terms yields the result.
�
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3.4 Fairness and Profitability

In this section, we introduce our definitions of fairness and profitability. We
then compare Fruitchain and Bitcoin with respect to them.

3.4.1 Fairness

Fairness is the distribution of rewards in proportion to hashrate of miners.
It is an important property that a reward scheme should satisfy in order to
promote participation in the mining process. Formally, we define fairness
as follows.
Definition 1. Fairness of a reward scheme. Let M be a miner in an execution
with hashrate fraction hM. Let RM denote the reward M gains and let RN denote
the reward network gains at the end of this execution. We call a reward scheme

fair if for every miner M, we have
E[RM]

E[RN ]
= hM.

We now show Bitcoin and Fruitchain reward schemes are fair. We adopt
the notation from Definition 1 in our proofs.
Lemma 4. Bitcoin reward scheme is fair.

Proof. Let M be an arbitrary miner in an execution that takes r rounds.
Let B denote the number of blocks he creates. Since M creates a block
at a round with probability phM, we have E[B] = phMr. Then, the ex-
pected total reward of M is given by E[RM] = E[B] · x = phMrx. Finally,
the expected total reward of the network is simply E[RN ] = prx. Thus,
E[RM]

E[RN ]
= hM. �

Lemma 5. Fruitchain reward scheme is fair.

Proof. Let M be an arbitrary miner in an execution that takes r rounds.
Let B denote the number of blocks and let F denote the number of fruits
M creates. Then, RM = ∑B

i=1 Rbi + ∑F
i=1 R fi where Rbi is the reward of i’th

block and R fi is the reward of i’th fruit that M creates. Applying Theorem
1 gives us E[RM] = E[B] · E[Rb] + E[F] · E[R f ]. Since M creates a block
with probability phM and creates a fruit with probability p f hM in each
round, we have E[B] = phMr and E[F] = p f hMr. Plugging the values of
E[Rb] and E[R f ] from Lemmas 2 and 3 and simplifying the terms yields
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E[RM] = phMrx 4. Finally, the expected total reward of the network is

simply E[RN ] = prx. Thus,
E[RM]

E[RN ]
= hM. �

3.4.2 Profitability

Miners should make regular payments to keep their businesses running
(e.g. electric bills). This means they must receive their rewards regularly.
Due to this, we believe profitability is an important property that a re-
ward scheme should satify. Formally, we define profitability of a miner as
follows.
Definition 2. Profitability of a miner. Let M be a miner in an execution. Let
Rm denote his reward at the end of this execution and let Tm denote his average
reward gap5 during this execution. Then, we define profitability of M for this

execution as
E[Rm]

E[Tm]
.

To compare Bitcoin and Fruitchain with respect to profitability, we first
deduce the expected average reward gap of a miner under them.
Lemma 6. Let M be a miner in an execution. Then under Bitcoin reward scheme,
we have E[Tm] =

1
phM

.

Proof. Let pavg denote the average probability of getting a reward at a
round for miner M. Then we have Tm ∼ Geom

(
pavg

)
. For every round,

probability of getting a reward is equal to probability of mining a block
under Bitcoin. Thus, pavg = phM. Using the expected value of geometric
distribution gives us E[Tm] = 1/phM. �

Lemma 7. Let M be a miner in an execution. Then under Fruitchain reward
scheme, we have

E[Tm] =
1

p(1− (1− hM)k+1+c0k)
.

Proof. Let pavg denote the average probability of getting a reward at a
round for miner M. Then we have Tm ∼ Geom

(
pavg

)
.

4We give this simplification in the Appendix.
5Number of rounds between two instants in which a miner gains his rewards. For

example, if a miner gains a reward at rounds 2 ands 4, his reward gap for this interval
is given by 4-2+1 = 3 (4 is inclusive). If a miner does not gain any reward during an
execution, his reward gap is equal to the length of this execution.
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Under Fruitchain, M does not earn a reward at a round in two cases: either
nobody creates a block or another miner than M creates a block and M
does not have any fruit or block in the window. The probability of the
first case is 1 − p for all rounds. The probability of the second case is
p(1− hM)k+1+c0k on average due to the multiplication of,

i. Probability6 of a miner other than M creates a block, p(1− hM),

ii. Average probability of M not having any block in the window,
(1− hM)k,

iii. Average probability of M not having any fruit in the window,
(1− hM)c0k.

Thus we see that,

pavg = 1−
(
1− p + p(1− hM)k+1+c0k)

= p(1−
(
1− hM)k+1+c0k).

Finally, the expected value of geometric distribution gives us,

E[Tm] =
1

p(1− (1− hM)k+1+c0k)
.

�

We can now show Fruitchain is more profitable than Bitcoin for any miner
M with hashrate fraction 0 < hM < 1. For hM = 1, it is trivial to see both
schemes are equivalent as M creates all the blocks/fruits.
Lemma 8. Let M be an arbitrary miner in an execution. Then, Fruitchain is
more profitable than Bitcoin for M. That is,

E[RBTCM ]

E[TBTCM ]
<

E[RFTCM ]

E[TFTCM ]
,

where RBTCM is the total reward and TBTCM is the average reward gap of M under
Bitcoin (RFTCM and TFTCM denote the same for Fruitchain, respectively).

Proof. Due to Lemmas 4 and 5, we have E[RFTCM ] = E[RBTCM ]. Thus prov-
ing the statement reduces down to showing,

phM < p(1− (1− hm)
k+1+c0k.

6This is same for all rounds, thus equal to its average
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By canceling p and rewriting the inequality we obtain,

(1− hM)1+k+c0k < 1− hM,

which holds for any k ≥ 1, c0 ≥ 1 as 0 < hM < 1. �

3.5 Extending the Results to a Dynamic Model

We like to note that all of our results obtained in Sections 3.3, 3.4.1 and
3.4.2 hold under a dynamic version of our model that allows miners to
change their hashrates and that allows miners to join/leave between rounds.
To simulate join/leave, we consider a miner’s hashrate as 0 for rounds he
is not present.

Results from Section 3.3 are already valid under the dynamic model as
they only depend on execution parameters p and p f which do not vary
with individual miners.

To see why our results from Sections 3.4.1 and 3.4.2 hold, consider an
execution in which a miner M changes his hashrate between rounds such
that his average hashrate fraction is hM. We can see this is equivalent to
an execution where M’s hashrate fraction is hM for all rounds in terms of
the expected number of blocks/fruits that M creates. This is simply due
to the way mining is modeled, i.e. each round is independent.

This immediately shows our results on fairness hold as they only depend
on our results from Section 3.3 and the expected number of fruits/blocks.
For profitability, note that we can compute the expected average reward
gap of M under Bitcoin as the ratio between the length of execution and
the expected number of blocks created by M. We can apply the same rea-
soning to Fruitchain to derive probabilities we use in our proof of Lemma
7.
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Chapter 4

Experimental Analysis of the
Reward Schemes

In this chapter, we aim to verify the correctness of our results from Chapter
3 by doing measurements with a simulator. We also try to illustrate their
implications on miners through simulations. In addition to that, we briefly
compare Fruitchain with Bitcoin under the selfish-mining attack.

4.1 Simulator

We implemented a simulator of our execution model from Section 3.1 us-
ing Python 3.5.2 [22]. The parameters of the simulator are as follows.

• p: Probability of network mining a block at a round.

• p f : Probability of network mining a fruit at a round.

• r: Number of rounds.

• n: Number of miners.

• h: List of hashrate fractions such that hi is the hashrate fraction of
miner i.

During the simulations, we simultaneously record how much reward each
miner earns under Bitcoin and Fruitchain as we explain in Section 3.1.
For Fruitchain, we use the default parameters, i.e. c1 = 1

100 , c2 = 1
10 , c3 =
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1
100 , k = 16. Further, we assume every block has accumulated an amount
of 12.5 BTC in transactions fees and ignore the fixed reward as Fruitchain
only takes fees into account.

4.2 Correctness of Theoretical Results

We briefly show our measurements match with their expected values from
Chapter 3.

4.2.1 Reward Properties of Fruitchain

We recall our formulas from Section 3.3 depend only on c0 =
p f
p . So, we

plot them against different c0 values.

The plots in this section are obtained under the following settings: we fix
r = 105, n = 1 and h1 = 1 and vary c0 from 10 to 50 by incrementing it
10 between simulations. To obtain different c0 values, we arbitrarily fix
p f = 0.5 and adjust p accordingly.

(a) Average reward per fruit (Lemma 2). (b) Average reward per block (Lemma 3).

Figure 4.1: Reward properties of Fruitchain.
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4.2.2 Fairness

In section 3.4.1, we proved a miner’s reward fraction is equal to his hashrate
fraction in expectation for both Bitcoin and Fruitchain. So, we plot reward
fraction for different hashrate fractions.

The plots in this section are obtained under the following settings: we fix
r = 105, p = 0.01, p f = 1, n = 2 and vary h2 from 0.2 to 0.8 by incrementing
it 0.2 between simulations. We do our measurement for miner 2.

(a) Fairness of Bitcoin (Lemma 4). (b) Fairness of Fruitchain (Lemma 5).

Figure 4.2: Fairness of Bitcoin and Fruitchain.

4.2.3 Profitability

Recall from Section 3.4.2, it is sufficient to analyze average reward gap to
analyze profitability. Average reward gap of a miner under both Bitcoin
and Fruitchain depends on p and the respective hashrate fraction of the
miner. We arbitrarily decided to fix the hashrate of the miner and plot
average reward gap for different p values.

The plots in this section are obtained under the following settings: we fix
r = 105, p f = 1, n = 2, h2 = 0.4 and vary p from 0.2 to 0.8 by incrementing
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it 0.2 between simulations. We do our measurement for miner 2.

(a) Reward gap under Bitcoin (Lemma 6). (b) Reward gap under Fruitchain (Lemma 7).

Figure 4.3: Reward gap under Bitcoin and Fruitchain.

4.3 Illustrating the Effect of Profitability

We now attempt to highlight the difference between Bitcoin and Fruitchain
by explicitly showing a miner’s profit under them. Basically, we wonder
for what hashrate fractions profitability of Fruitchain becomes visible. To
this end, we plot profit of a miner against his hashrate fraction for both
Bitcoin and Fruitchain.

The plots in this section are obtained under the following settings: we fix
p = 0.001, p f = 1, n = 2 and adjust the running time of each simulation
such that it corresponds to roughly 15 days, i.e. r = 1

p · 144 · 15 = 2.16 · 106

1. The cost of mining per round is arbitrarily set as 10% of the expected
gain per round. We do 3 simulations for h2 = 0.1, 0.01 and 0.001 and we
do our measurements for miner 2.

1Roughly, 144 blocks are created in each day in the Bitcoin network [23].
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(a) Profit under Bitcoin. (b) Profit under Fruitchain.

Figure 4.4: Profit under Bitcoin and Fruitchain with h2 = 0.1.

(a) Profit under Bitcoin. (b) Profit under Fruitchain.

Figure 4.5: Profit under Bitcoin and Fruitchain with h2 = 0.01.
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(a) Profit under Bitcoin. (b) Profit under Fruitchain.

Figure 4.6: Profit under Bitcoin and Fruitchain with h2 = 0.001.

We see that Bitcoin and Fruitchain are nearly equivalent in Figure 4.4. At
the end of the simulation, miner’s profit is roughly 2500 BTC for both
under Bitcoin and Fruitchain.

In Figure 4.5, miner is better under Fruitchain. His profit is about 225 BTC
under Fruitchain and slightly below 200 under Bitcoin. Note that graphs
are scaled differently.

Finally, the advantage of Fruitchain is apparent in Figure 4.6. Under Bit-
coin, miner’s profit is negative as he was not able to create any block.
However, under Fruitchain, his profit is positive due to rewards he gained
from his fruits.

Our experiments show that a miner’s profit is roughly the same for Bitcoin
and Fruitchain if he has a relatively large portion of the hashrate (≈ 0.1).
However, if he happens to have relatively a small portion of the hashrate
(≈ 0.01), he clearly profits more under Fruitchain. The main reason is,
due to low reward gap, rewards under Fruitchain converge faster to their
expected values (recall that the expected reward is the same for Bitcoin
and Fruitchain due to our results on fairness).
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4.4 Reward Scheme Switching Simulation

We now try to illustrate the effect we captured in Section 4.3 on a network
scale. To this end, we conduct a simple simulation.

Briefly, our simulation is as follows: we divide r rounds into t length inter-
vals. For each interval, miners have a preferred reward scheme. During an
interval, miners gain their rewards according to their preferred scheme. At
the end of an interval, each miner compares his earnings with its expected
value. If his earnings are less than x% of its expected for this interval, he
switches his preferred reward scheme. Each interval is independent of the
other, i.e. we reset earnings of miners between intervals.

We conduct our simulation with the following parameters. We have n = 15
miners such that their hashrates are distributed according to the Bitcoin
network as of 21/02/2018 [24]. Preferred reward scheme of every miner
is initialized to Bitcoin’s. Other parameters are t = 125 · 103, r = 2 · 106,
x = 85, p = 0.001, p f = 1. We picked these values after experimenting
with different settings and obtaining a stable state under those, i.e. nodes
stop switching their reward schemes after some point.

During the simulation, we take a ”snapshot” after each interval. That is,
we record the number of nodes and their total hashrate fractions for both
reward schemes. Resulting plots from our simulation are given in Figure
4.7.
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(a) Change in the number of nodes. (b) Change in the hashrate fractions.

Figure 4.7: Reward scheme switching experiment.

We see that miners keep switching rewarding schemes until 11th snap-
shot then, the network stabilizes. In the end, we have 11 miners that use
Fruitchain reward scheme and 4 that use Bitcoin reward scheme. However,
the total hashrate fraction of nodes that use Bitcoin’s is about 0.6. This
means miners with low hashrate are concentrated under Fruitchain’s re-
ward scheme. This is in-line with our simulations from Section 4.3. That is,
miners with high hashrates do well under Bitcoin and however, Fruitchain
is a much better option for miners with low hashrates.

4.5 Selfish-Mining

In addition to our analysis of profitability, we also provide a brief analysis
of the selfish-mining attack [9] with randomized chain selection rule 2. A
theoretical analysis of this attack for Fruitchain is given in [6] and we
merely confirm authors’ results through our simulations.

We first recall the selfish-mining as summarized in [6]. For simplicity,

2Upon a fork, miners select a branch randomly.
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assume we have 2 miners: an attacker and an honest miner. The attacker
attempts to build a secret chain that has d more blocks than the public
(honest) chain and,

• if d = 1 and the honest node finds a block, the attacker broadcasts
his secret block,

• if d > 1, the attacker tries to extend his secret chain until d = 1 . He
broadcasts his secret blocks once d = 1.

The analysis in [9] shows that the attacker creates 38.4% of blocks with
33% of the hashrate with selfish-mining.

In the context of Fruitchain, the attacker always broadcast his fruits and
follows the selfish-mining strategy for broadcasting his blocks. In our
simulations, we assume fruits of the attacker bring the maximal freshness
bonus and fruits of the honest miner does not bring any freshness bonus
to maximize the effect of selfish-mining in favor of the attacker.

We run a simulation with the following setting: we fix r = 105, p =
0.001, p f = 1, n = 2 and vary h2 from 0.1 to 0.5 by incrementing it 0.1
between simulations. We record earnings of miner 2 who mines according
to selfish-mining.

(a) Bitcoin vs. Fruitchain under selfish-mining. (b) Effect of c0 to selfish-mining under Fruitchain.

Figure 4.8: Selfish Mining.
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As can be seen in Figure 4.8 (a), Fruitchain is much more resistant to
selfish-mining. Intuitively, the reason is this: in Bitcoin, attacker’s advan-
tage in blocks directly transfer to an advantage in rewards. However, in
Fruitchain, this is not the case. Rewards are distributed over both blocks
and fruits. Fruits of the honest miner are invalid under the secret chain,
so the attacker cannot include these fruits in his blocks and as a conse-
quence, his blocks worth less than the honest miner’s blocks as the worth
of a block is roughly proportional to the number of fruits contained in it.

We also plot earnings of the attacker under Fruitchain for different c0 val-
ues in Figure 4.8 (b). Rewards concentrate on blocks as c0 gets smaller
which causes the advantage in the number of blocks to transfer to an ad-
vantage in rewards. This increases the rewards of the attacker as can be
seen.
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Chapter 5

Conclusions

The main theme of our work was capturing and highlighting the differ-
ences between rewarding mechanisms of Bitcoin and Fruitchain. To this
end, we first introduced a simplified execution model that solely focuses
on the rewarding mechanisms of the protocols. Then, we explicitly de-
fined two important properties for miners: fairness and profitability. Fol-
lowing that, we have analyzed Bitcoin’s and Fruitchain’s performance in
terms of satisfying these properties. Through our analysis, we have proved
Fruitchain is more profitable than Bitcoin and they are equivalent in terms
of fairness, that is, according to our definitions.

After establishing our results, we showed their implications for miners
through simulations. We showed the profitability of Fruitchain is espe-
cially important to miners with small hashrates by comparing their profits
under Bitcoin and Fruitchain. Concretely, we showed miners were able to
earn profits in a steady manner under Fruitchain. This confirms that com-
puting power is less likely to be centralized under Fruitchain. Lastly, we
also did a brief experimental analysis of the protocols under the selfish min-
ing attack and illustrated that attackers gain considerably less in Fruitchain
than in Bitcoin.
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Appendix A

Simplifying terms in the proof
of Lemma 5

We adopt the following notation:
a = (1− c1)x,
b = c2 − c3,
t = E[N + 1] = p f +p

p .

We like to show the following,

phMrx ?
= E[F] · E[R f ] + E[B] · E[Rb]

= p f hMr · E[R f ] + phMr · E[Rb]

px ?
= p f · E[R f ] + p · E[Rb].

We first deal with the term p f · E[R f ],

p f · E[R f ] = p f
( a(1− b)

t
)

=
p f a− p f ab

t
.
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Now with the term p · E[Rb],

p · E[Rb] = p
(

x− a +
a(1 + (t− 1)b

t
)

= p
( xt− at + a + atb− ab

t
)

=
(p f + p)x− (p f + p)a + pa + (p f + p)ab− pab

t

=
(p f + p)x− p f a + p f ab

t
.

Finally, we complete the simplification as follows,

px ?
= p f · E[R f ] + p · E[Rb]

=
p f a− p f ab + (p f + p)x− p f a + p f ab

t

=
(p f + p)x

t
= px.
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