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Organizational Modeling and Simulation of Blockchain Systems

by Hector ROUSSILLE

Blockchain technology has gained substantial traction in recent years, revolutioniz-
ing industries through its decentralized and trustless nature. However, the security
of blockchain systems and, specifically, their underlying incentive mechanisms re-
mains a critical concern, potentially leading to catastrophic losses if those economic
incentives shaping the behavior of rational participants are not aligned with the ex-
pected behavior. This thesis addresses this challenge by proposing a comprehensive
framework that ultimately leverages MARL to enhance the security of blockchain in-
centives while not being strictly limited to it. We propose a generic blockchain model
that encapsulates the core components of blockchain systems, making it flexible and
easily adaptable to diverse blockchain designs. This model serves as a foundational
framework for enhancing blockchain security. Based on this model, we define a
taxonomy of incentive vulnerabilities in blockchain systems. This classification cat-
egorizes, ranks and prioritizes vulnerabilities based on their feasibility and network
impact. The taxonomy aids in identifying critical areas of interest where automatic
and potentially exploratory work might be required to assess the resilience of the
system. To complete the framework, we introduce a blockchain simulator that is, by
construction, as close as possible to the generic blockchain model but, it is also ex-
act with respect to specific protocols, and, compatible with reinforcement learning,
allowing us to replicate real-world scenarios using honest or byzantine agents with
arbitrary objectives. The same simulator can then be used to assess the effectiveness
of a given countermeasure. Finally, we show a concrete study of protocol vulner-
ability of Ethereum 2.0 using all of the above contributions, serving as a practical
example of the usage of MARL in the context of the proposed framework. By inte-
grating these contributions, this thesis contributes to the evolving field of blockchain
security and provides the means for developers and researchers to analyze, identify
and address incentive vulnerabilities in a standardized and systematic manner. Us-
ing MARL as a security enhancement tool offers promising results, paving the way
for more robust and secure blockchain systems in the future.
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Résumé

Cette thèse vise à explorer et à normaliser l’utilisation de l’intelligence artificielle
(IA) pour évaluer et améliorer la sécurité des systèmes de blockchain. Plus précisé-
ment, nous cherchons à utiliser l’apprentissage par renforcement (RL) et plus partic-
ulièrement, l’apprentissage par renforcement multi-agents (MARL) pour former des
agents rationnels (i.e., basés sur l’utilité, la recherche de profit) afin de valider que les
incitations économiques du système sont alignées sur le comportement rationnel. Il
est également possible d’utiliser le MARL comme mécanisme de détection, permet-
tant d’avertir les développeurs si une exploitation donnée du protocole est détectée,
ou bien, d’optimiser la capacité de traitement d’un système blockchain en définis-
sant ses hyperparamètres tels que la taille des blocs et l’intervalle entre les blocs en
fonction de la charge du réseau en temps réel. Cette approche est destinée à faciliter
la conception et le développement de nouveaux systèmes de blockchain publics ainsi
qu’à sécuriser les systèmes existants soumis à des mises à jour de leurs mécanismes
d’incitation.

À cette fin, nous avons identifié trois besoins majeurs : Premièrement, il n’existe
pas de modélisation des systèmes de blockchain qui soit à la fois générique et suff-
isamment expressive pour s’appliquer à des systèmes de blockchain très différents,
et encore moins pour représenter les attaques à la fois au niveau comportemental
(i.e., byzantins) et au niveau du système (i.e., attaques du réseau et de la réputation).
Deuxièmement, nous n’avons pas connaissance de travaux catégorisant les vulnéra-
bilités d’incitations dans les couches de consensus et d’exécution qui permettraient
aux chercheurs et aux développeurs d’orienter leurs efforts vers les composants d’un
système de blockchain qui sont les plus susceptibles d’être exploités. Troisièmement,
les études RL et MARL nécessitent un environnement, bien qu’il existe de nombreux
simulateurs de blockchain, ils sont soit spécifiques à une blockchain en particulier,
soit orientés vers un sujet spécifique tel que la production ou la propagation de blocs,
il existe un besoin pour un simulateur de blockchain générique, compatible RL et
consensus agnostique, permettant une déviation comportementale à n’importe quel
niveau du système.

IA dans les systèmes de blockchain

Il existe relativement peu de travaux axés sur l’automatisation de la recherche de
vulnérabilités d’incitations dans les systèmes de blockchain avec l’apprentissage par
renforcement, mais le sujet a gagné en popularité pendant la période où cette thèse
a été menée. La plupart des travaux existants se concentrent sur le consensus Proof
of Work (PoW), en particulier sur l’attaque dite Selfish Mining après sa découverte
dans (Eyal and Sirer, 2014), qui a été affinée dans (Nayak et al., 2016) et (Sapirshtein
et al., 2016) sous les noms de stubborn mining et optimal selfish mining, respective-
ment.

(Wang et al., 2021a) a proposé une version modifiée du Q-Learning tabulaire
maximisant les gain de minage relatif d’un agent dans une configuration à 2 agents,
de sorte que les auteurs sont en mesure de faire correspondre la stratégie de minage
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égoïste optimale sans les connaissance générale du système requise dans (Sapir-
shtein et al., 2016). Ce résultat a montré des perspectives prometteuses pour le RL,
en particulier dans le contexte des blockchains utilisant un consensus de preuve de
travail. (Wang et al., 2021b; Yang et al., 2020) appliquent tous deux le RL à une
variante du minage égoïste appelée minage égoïste par corruption, qui consiste es-
sentiellement à fusionner la stratégie initiale de minage égoïste avec des attaques
par corruption telles que décrites dans (Gao et al., 2019), en étendant l’idée initiale
de (Bonneau, 2016). (Yang et al., 2020) applique un modèle d’attaquant rationnel
conforme à notre ligne de travail, garantissant qu’une attaque est une menace valide
dans un cadre multi-agents avec une motivation à long terme prise en compte par
les attaquants. Le RL est utilisé ici pour que l’attaquant choisisse entre un ensem-
ble de stratégies déjà définies dans le but de maximiser son profit, l’expressivité des
modèles de RL sont donc limités et contraints à ce qui est déjà connu.

En réponse à ces nouvelles stratégies d’exploitation basées sur l’IA, plusieurs
systèmes de détection eux même basés sur l’IA ont été conçus. Ces systèmes sont
présentés dans (Peterson et al., 2022; Wang et al., 2021c). Ces systèmes n’utilisent
pas spécifiquement le RL, mais s’appuient sur l’IA pour fournir une alerte précoce
en cas de détection d’une attaque de minage égoïste en utilisant l’apprentissage au-
tomatique et l’apprentissage profond basés sur les données passées et actuelles de la
blockchain.

(Hou et al., 2021) est le plus proche de notre travail : Les auteurs proposent un
cadre pour automatiser l’analyse des attaques dans les systèmes de blockchain, et
discutent des avantages de l’utilisation de l’apprentissage par renforcement basé sur
l’apprentissage profond dans le contexte des systèmes de blockchain. Ils fournissent
des résultats inédits à la fois sur Bitcoin et sur une première version d’Ethereum
2.0. Ils proposent de suivre une approche en trois étapes, dont la première consiste
à créer un environnement de simulation du protocole en question. La deuxième
étape consiste à choisir un modèle d’attaque qui inclut la définition du nombre et du
type d’agents. La troisième et dernière étape consiste à sélectionner un algorithme
RL pour mener l’étude. Ils ne proposent pas de composants déjà utilisables pour
modéliser, classifier ou simuler un système blockchain. Leurs résultats montrent
qu’à mesure que des agents plus rationnels sont ajoutés au système, les stratégies de
minage égoïstes deviennent moins rentables, ce qui démontre l’importance de simu-
lations à plus grande échelle pour reproduire fidèlement la dynamique des systèmes
de blockchain publics.

(Zhang et al., 2020) propose une approche intéressante dans laquelle les agents
RL sont formés pour optimiser les hyperparamètres d’une blockchain fragmentée
tels que l’intervalle de re-fragmentation, le nombre de fragments et la taille des blocs,
ce qui permet au système de s’adapter dynamiquement à la charge de travail. Les
auteurs ont placé l’IA au centre du protocole de la blockchain, en lui donnant un
contrôle total sur certains paramètres critiques de la blockchain. Cela peut ouvrir le
système à de nouveaux vecteurs d’attaque tels que l’exploitation de modèles pour
nuire à la blockchain en utilisant le système même qui est censé aider à la sécuriser.

Il convient également de noter que des groupes de recherche spécifiques à la
blockchain explorent la RL dans le contexte de leur propre blockchain, comme le
Robust Incentive Group (RIG1) de la Fondation Ethereum.

Contributions

Nos contributions sont :
1https://ethereum.github.io/rig/ dernier accès le 15/10/2023

https://ethereum.github.io/rig/
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• AGR4BS : Un modèle blockchain organisationnel générique basé rôles qui
peut représenter des systèmes de nature différentes.

• Taxonomie des vulnérabilités d’incitations de la blockchain fondée sur le mod-
èle AGR4BS.

• pyAGRBS : Un simulateur de blockchain générique open source également
aligné sur AGR4BS, conçu pour la modularité et la compatibilité avec l’apprentissage
par renforcement.

AGR4BS

Le Chapitre 3 décrit notre première contribution et définit notre modèle blockchain
organisationnel et générique nommée AGR4BS (Agent, Group, Roles for Blockchain
Systems) inspiré du modèle AGR (Ferber et al., 2004). Il permet de représenter la
composante sociale, multi-agent et organisationnelle des systèmes blockchain par le
biais de trois abstractions de haut niveau, a savoir, Agent, Groupe et Rôle, de ce fait, il
se différencie des outils de modélisation existants pour les systèmes blockchain.

Les Agents sont des entités actives et communiquantes pouvant endosser un ou
plusieurs rôle au sein de groupes. Un agent se doit d’avoir au moins un rôle, et peut
appartenir a plusieurs groupes simultanément.

Les Rôles sont des représentations abstraites de fonctions qu’ont les agents au
seins de groupes. Un rôle décrit les responsabilités et contraintes qui sont associées
aux agents, il se compose de routines concrètes appelées comportements.

Les Groupes sont des structures organisationnelles composées d’agents ayant des
activités et / ou des buts communs. Les agents membres d’un même groupe peuvent
communiquer entre eux.

Dans le cadre des systèmes blockchain, nous avons identifié deux types de groupes:

• Groupe structurel

• Groupe d’intérêt

Un groupe structurel est un groupe nécessaire au bon fonctionnement d’un sys-
tème blockchain donné, (ex:, Les Mineurs de Bitcoin). Nous définissons deux groupes
structurels nécessaires : Le groupe de gestion des transactions ainsi que le groupe
de gestion des blocs, toute représentation d’un système blockchain se doit de pos-
séder ces deux groupes. Un groupe d’intérêt est un groupe superflu, donc non
nécessaire au bon fonctionnement du protocole. Les agents peuvent créer et re-
joindre des groupes d’intérêts afin de fournir de nouvelles fonctionnalités au sys-
tème blockchain, celles-ci peuvent être potentiellement rentable pour les membres
du groupe (ex:, Une mining pool).

Les Rôles nécessaires aux systèmes blockchain sont :

• Transaction proposer

• Transaction endorser

• Block Proposer

• Block Endorser

• Blockchain Maintainer
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• Investor

• Investee

• Contractor

• Oracle

Transaction proposer permet de créer et proposer une transaction (i.e., une transi-
tion d’état du système). Transaction endorser permet de voter pour ou contre l’inclusion
dans un bloc d’une transaction proposée par un Transaction proposer. Block proposer
permet de créer et proposer de nouveaux blocs au système. Block endorser per-
met de voter pour ou contre l’inclusion dans la chaîne d’un bloc propose par un
Block Proposer. Blockchain Maintainer maintient une copie locale de la blockchain et
s’assure de son intégrité. Investor permet d’investir des ressources financières ou
computationelles au sein du système blockchain. Investee permet de recevoir des in-
vestissements dans le but d’accomplir des taches spécifiques pour ses investisseurs,
moyennant une commission. Contractor fournit des services interne a la blockchain
aux autre participants sur une base contractuelle. Ce rôle permet par exemple de
représenter et d’implémenter des contrat intelligents ayant des fonctionnalités arbi-
traires. Enfin, le rôle Oracle permet de fournir des services extérieurs, comme des
flux de données a la blockchain et donc a ses participants.

Un agent utilisant le rôle de Contractor est donc un contrat intelligent, tandis
qu’un agent qui ne l’utilise pas est considéré comme un noeud, c’est a dire, un par-
ticipant actif du système.

En utilisant ce modèle nous montrons que nous sommes en mesure de représen-
ter des systèmes blockchain de nature différentes comme Bitcoin (Nakamoto, 2008)
, Tendermint (Kwon, 2014), Ethereum 2.0 (Buterin et al., 2020) ou encore Hyper-
ledger Fabric (Rocha and Ducasse, 2018). En effet, ces modèles ne partagent pas le
même mécanisme de consensus et donc n’ont pas la même structure, ils ne suppor-
tent pas tous les contrat intelligents et peuvent avoir des mécanismes de permis-
sions différents, mais il peuvent tous être modélisés avec un seul et unique modèle :
AGR4BS.

Enfin, il est possible de se concentrer sur des déviations de rôle ou de comporte-
ments afin de modéliser des attaques du système ou de participants par d’autres par-
ticipants. Certaines des attaques que nous modélisons sont le délit d’initié, l’attaque
éclipse ou encore l’attaque de trous de ver.

Le modèle AGR4BS, de part son expressivité et sa modularité sert de fondation
a la taxonomie ainsi qu’a notre simulateur blockchain.

Taxonomie

Notre seconde contribution est détaillée dans le Chapitre 4, il s’agit d’une taxonomie
des vulnérabilités d’incitations dans les systèmes blockchains basée sur la notion de
rôle définie par AGR4BS.

Pour classer, catégoriser et mesurer les vulnérabilités, nous utilisons principale-
ment les concepts suivants : famille d’impact, gravité, risque, échelle, et score de
priorité.

Famille d’impact se rapporte au type d’impact attendu de l’exploitation de la vul-
nérabilité. Trois possibilités sont envisagées : L’équité, l’économie et la sécurité. Un
impact sur l’équité se produit chaque fois qu’une discrimination entre les agents se
produit pour une raison quelconque qui ne fait pas partie du protocole. De même,
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tout déséquilibre entre la proportionnalité des ressources investies et la récompense
reçue est inclus dans cette famille d’impact. Un impact économique se produit
lorsque l’économie du système est perturbée, par exemple par une augmentation
artificielle des frais de transaction. Un impact sur la sécurité se produit lorsqu’une
propriété essentielle de la blockchain est compromise, par exemple l’impossibilité
de finaliser les blocs nouvellement créés ou la perte d’intégrité de la blockchain en
raison de l’inclusion de données invalides.

Sévérité définit le niveau d’impact d’une attaque réussie et prend une valeur très
élevée, élevée, moyenne, faible et très faible. Ces niveaux ne sont pas basés sur
une notion objectivement quantifiable de gravité, mais sont utilisés pour classer les
vulnérabilités de manière informelle et aider ainsi à calculer leurs scores de priorité
respectives. Très faible » signifie qu’un agent ou un groupe d’agents est légèrement
touché mais qu’il fonctionne toujours, sans impact quantifiable sur les groupes ou
le système. ’Faible’ implique également qu’un agent, ou un sous-groupe d’agents,
est impacté de manière plus significative, voire non fonctionnel, alors que le groupe
et le système de blockchain dont il fait partie sont toujours fonctionnels. Un niveau
de gravité « moyen » a un impact sur les agents et les groupes d’une manière qui
ne met pas en péril le système, mais qui a des conséquences sur au moins l’une de
ses propriétés essentielles, telles que l’équité, la sécurité ou l’économie. Un niveau
de gravité « élevé » implique un impact non négligeable sur le système. Enfin, le
niveau « Très élevé » correspond à une menace immédiate, telle qu’un problème
général d’équité ou l’arrêt pur et simple du système.

Risque fait référence à la faisabilité d’une attaque en termes de ressources néces-
saires pour la mener a bien. Les niveaux de risque sont similaires à ceux définis pour
la gravité : « Très élevé », « Élevé », « Moyen », « Faible » et « Très faible ». Très élevé
» signifie que la vulnérabilité associée est relativement facile à mettre en place car
elle ne nécessite que quelques ressources. Le niveau « élevé » correspond à une at-
taque qui nécessite un certain nombre de ressources, mais qui reste réalisable par la
plupart des participants. Moyen » signifie que l’attaque nécessite une quantité non
négligeable de ressources. Les termes « faible » et « très faible » sont utilisés pour
décrire les attaques nécessitant des ressources excessivement importantes.

Score de priorité est une valeur numérique calculée en fonction de la sévérité et du
risque.

Nous listons ainsi différents vecteurs d’attaque connus dans des systèmes blockchain
de différentes nature, tel que Bitcoin ou Ethereum, et les associons avec un ou plusieurs
rôles AGR4BS, puis, nous calculons leurs scores de priorités. Ce travail nous permet
de mettre en avant les rôles et comportements les plus sujets aux déviations ayant
un fort impact potentiel sur le système tel que Blockchain Maintainer et Block proposer.
La taxonomie permet aussi de catégoriser de futures attaques ainsi que de quanti-
fier leur impact. Une vulnérabilité d’incitation touchant le protocole Ethereum 2.0 et
pouvant mener a la créations volontaire de branches adverses dans la blockchain a
attirée notre attention d’une part en raison de son score de priorité élevé mais aussi
car elle touche un protocole relativement jeune. Cette vulnérabilité, sélectionnée
grâce a notre taxonomie basée sur AGR4BS fera l’objet d’une étude pratique et donc
d’une mise en application du cadre de travail que nous proposons

Simulateur

Dans le Chapitre 5 nous présentons notre troisième et dernière contribution : un
simulateur blockchain, basé rôles et compatible avec le MARL. Il existe plusieurs
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simulateurs de blockchain dits génériques dans la littérature. La plupart d’entre eux
sont mentionnés dans (Albshri et al., 2022). Ils adoptent pour la plupart un mé-
canisme événementiel (Babulak and Wang, 2008), aligné sur la nature des systèmes
de blockchain. Cependant, ils n’adoptent pas toujours une approche basée sur les
agents, et certains d’entre eux ne considèrent que le réseau lui-même, en se con-
centrant sur les transactions et les temps de diffusion des blocs en fonction d’une
topologie de réseau spécifique, et non sur l’analyse des incitations, parfois même en
ne permettant pas de telles études en raison de choix de conception.

Les simulateurs les plus proches de nos besoins sont BlockSim (Alharby and
Moorsel, 2019), MAX (Gürcan, 2024) et DAGSim (Zander et al., 2019). Ces simula-
teurs ne sont pas basés sur le modèle AGR a l’exception de MAX, mais ce dernier
manque de performance pour permettre l’entraînement de modèles d’intelligence
artificielle pendant une simulation, en particulier a cause de son modèle de temps
non événementiel. Nous avons donc pris la décision de développer notre propre
simulateur, dont l’architecture se base sur AGR4BS. Écrit en Python, ce simulateur
est déterministe, événementiel et modulaire. Ainsi, les agents peuvent jouer un
nombre arbitraire de rôles qui comportent eux même un certain nombre de com-
portements permettant la réalisation de fonctions de bas niveau. Des modèles blockchain
comme Bitcoin ou Ethereum 2.0 avec un support complet des contrat intelligents
sont déjà disponibles (https://github.com/hroussille/agr4bs), les chercheurs ou développeurs
peuvent librement modifier une implémentions existante ou bien développer les
rôles et comportements nécessaires pour implémenter un nouveau modèle.

Simulation

Nos trois contributions se rejoignent dans le Chapitre 6 ou nous présentons une
étude d’une vulnérabilité potentielle du système de récompense des contributeurs
du protocole Ethereum 2. Elle permettrait a des agents rationnels des déviations des
rôles Block Proposer et Block Endorser afin de créer volontairement des branches ad-
verses dans la blockchain afin de voler les récompenses des agents honnêtes. Cette
vulnérabilité fut choisie en fonction de son score de priorité élevé dans notre tax-
onomie et du fait qu’elle impacte un protocole récent qui se trouve être la seconde
blockchain en terme de capitalisation. Cette étude permet aussi de démontrer la
mise en pratique du MARL dans notre simulateur, et sert donc d’exemple concret
du cadre de travail que nous proposons dans cette thèse.

Nous considérons donc 32 agents blockchain, dont 8 agents utilisant un rôle dé-
viant de Block Proposer et 10 utilisant un rôle déviant de Block Endorser, les rôles dé-
viants contiennent des comportements représentés par des modèles d’apprentissage
profond entraînés avec l’algorithme Deep Q Learning (DQN). Les agents évoluent
dans un protocole Ethereum 2.0 correct. Nous considérons deux fonctions objectifs
pour les agent, l’une étant un critère économique collectif visant a déterminer si les
agents malicieux créent des branches pour optimiser leur récompenses. La seconde
étant un critère base sur le nombre de branches adverses crées visant a déterminer si
les agents malicieux optimisent leur récompenses en créant des branches. La simula-
tion utilisant la première fonction objectif ne montre aucun signe de convergence des
agents malicieux au cours de l’apprentissage, tandis qu’en utilisant dans la seconde
fonction objectif, les agents malicieux créent de plus en plus de branches et obtien-
nent une récompense moyenne supérieur a celle des agents honnêtes. Ces résultats
montrent que l’utilisation du MARL est possible, mais met en lumière des difficultés
inhérentes a son utilisation dans les systèmes blockchain, la nature asynchrone de

https://github.com/hroussille/agr4bs
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ces environnent et les multiple interactions entre les agents violent certaines hy-
pothèses de base de l’apprentissage par renforcement, comme la stationnarité de
la fonction objectif et de la fonction de transition d’état, ce qui a tendance a rendre
l’apprentissage instable. Nous recommandons donc d’utiliser le MARL quand cela
est possible, mais aussi de de considérer d’autres approches automatiques qui ne
reposent pas sur ces mêmes hypothèses comme les algorithmes génétiques.
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Chapter 1

Introduction

1.1 Context

This thesis aims at exploring and standardizing the usage of Artificial Intelligence
(AI) to assess and improve security of blockchain systems. Specifically, we aim at us-
ing Multi-Agent Reinforcement Learning (MARL) to train rational (i.e., utility based,
profit seeking) and irrational agents in order to validate that the system’s incentives
are aligned with the rational behavior. It is also possible to use MARL as a smart de-
tection mechanism, warning the system if a given exploit is detected, or to optimize
the workflow of a blockchain system by defining its hyperparameters such as block
size and block rate according to real time network load. This approach is intended
to help the design and development of new public blockchain systems as well as
secure existing ones subject to updates of their incentive mechanisms.

To this end, we identified three major needs: First, there is no modeling of blockchain
systems that is both generic and expressive enough to be applicable to widely dif-
ferent blockchain systems, let alone be able to represent attack both at a behavioral
level (i.e., faulty / byzantine implementation) and at a system level (i.e., network and
reputation attacks). Second, we did not find any work categorizing incentive vul-
nerabilities in both the consensus and execution layers that would allow researchers
and developers to direct their efforts towards the components of a blockchain system
that are most likely to be exploited. Third, RL and MARL studies require an environ-
ment, while there exist many blockchain simulators, they are either blockchain spe-
cific or opinionated towards a specific topic such as block production or block prop-
agation, there is a need for a generic, RL compatible, consensus agnostic, blockchain
simulator allowing behavioral deviation at any level of the system.

1.2 AI in blockchain systems

There are relatively few existing works focused on automating incentive vulnera-
bility search in blockchain systems with Reinforcement Learning, but the topic did
gain in popularity during the time this thesis was conducted. Most of the existing
ones focus on Proof of Work (PoW) consensus, specifically the so-called Selfish Min-
ing attack following its discovery in (Eyal and Sirer, 2014) which was further refined
in (Nayak et al., 2016) and (Sapirshtein et al., 2016) under the names of stubborn
mining and optimal selfish mining respectively.

(Wang et al., 2021a) proposed a modified version of tabular Q-Learning maxi-
mizing an agent relative mining gain in a 2-agent setup, so that the authors are able
to match the Optimal Selfish Mining strategy without the general system knowledge
required in (Sapirshtein et al., 2016). This result showed promising perspectives for
RL, especially in the context of PoW. (Wang et al., 2021b; Yang et al., 2020) both apply
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RL to a variant of selfish mining called bribery selfish mining, which is essentially
merging the initial selfish mining strategy with bribery attacks as described in (Gao
et al., 2019) itself, extending the initial idea of (Bonneau, 2016). (Yang et al., 2020)
enforces a rational attacker model in line with our line of work, ensuring that an
attack is a valid threat in a multi-agent setting with long term incentive taken into
account by the attackers. RL is used here so that the attacker chooses between a set
of already defined strategies with the aim of maximizing profit, the expressivity of
the RL policy is therefore limited and constraint to what is already known.

In response to those new AI powered mining strategies, several AI based detec-
tion systems were designed. Such systems are presented in (Peterson et al., 2022;
Wang et al., 2021c). Those systems do not specifically use RL, but rely on AI to
provide early warning to the blockchain system in case a selfish mining attack is
detected using machine learning and deep learning for inference based on past and
current blockchain data.

(Hou et al., 2021) is the closest to our work: The authors propose a framework
to automate attack analysis in blockchain systems, and discuss the benefits of using
deep learning based reinforcement learning in the context of blockchain systems.
They provide novel results on both Bitcoin and an early version of Ethereum 2.0.
They propose to follow a three stage approach, where the first step is to build a
simulation environment of the protocol of interest. The second step is to choose
an attack model which includes the definition of the number, and type of agents.
The third and final step is to select a RL algorithm to conduct the study. They do
not propose already usable components to model, classify nor simulate a blockchain
system. Their result show that as more rational agents are added to the system, self-
ish mining strategies become less profitable, which demonstrates the importance of
larger scale simulations to closely match the dynamics of public blockchain systems.

(Zhang et al., 2020) proposes an interesting approach where RL agents are trained
to optimize sharded blockchain hyperparameters such as the re-sharding interval,
the shard number and block size, effectively allowing the system to scale dynami-
cally under load by carefully handling the tradeoff between security and through-
put. The authors put AI in the center of the blockchain protocol, giving it full control
over some critical blockchain parameters. This may open the system to new attack
vectors such as models exploitation to harm the blockchain using the very system
that is supposed to help secure it.

It must be noted also that blockchain specific research groups are exploring RL
in the context of their own blockchain, such as the Robust Incentive Group (RIG1) of
the Ethereum Foundation.

1.3 Thesis Overview

1.3.1 Contributions

Our contributions are threefold :

• AGR4BS : A generic organizational, role based blockchain model that can rep-
resents widely different systems.

• A taxonomy of blockchain incentive vulnerabilities grounded in the AGR4BS
model.

1https://ethereum.github.io/rig/ last accessed on 15/10/2023

https://ethereum.github.io/rig/
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• pyAGRBS : An open source, generic blockchain simulator also aligned with
AGR4BS, designed for modularity and reinforcement learning compatibility.

1.3.2 Document Outline

This document is structured as follows :

• Chapter 2 - Background - Introduces the necessary concepts to grasp blockchain
systems and Reinforcement Learning.

• Chapter 3 - AGR4BS - Presents AGR4BS, a generic, role base blockchain model
that can represent widely different blockchain systems and vulnerabilities.

• Chapter 4 - A role based taxonomy of incentive vulnerabilities - Describes a
novel taxonomy of blockchain incentive vulnerabilities grounded in AGR4BS.

• Chapter 5 - A generic blockchain simulator - provides insight on the design
choices made for the architecture of our role based blockchain simulator.

• Chapter 6 - Towards RL experiments in blockchain systems - describes one
practical study of an Ethereum 2.0 vulnerability in a coherent framework based
on the previous contributions.
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Chapter 2

Background

2.1 Distributed Systems

Distributed systems have become a fundamental paradigm in computer science and
have a significant impact on various aspects of our modern world, the most promi-
nent example being the Internet itself. In this section, we provide an overview of dis-
tributed systems, their importance, and the key concepts that underlie their design
and implementation as they will be of upmost importance to understand blockchain
systems.

A distributed system is a collection of interconnected, autonomous computers
that work together as a unified system to provide a set of services or perform tasks.
Unlike traditional centralized systems, where all processing occurs on a single ma-
chine, distributed systems distribute the computation and data across multiple nodes.
This distribution offers several advantages, including fault tolerance, scalability, and
improved performance. The motivation for using distributed systems arises from
the need to solve complex problems that cannot be efficiently or safely addressed
by a single, monolithic machine. Such systems can scale horizontally by simply
adding more machines, allowing them to handle increasing workloads and user de-
mands. Additionally, through data and services replication across multiple nodes
and potentially diverse geographical locations, distributed systems can continue to
operate even in the presence of hardware failures or network disruptions since they
never expose a Single Point of Failure (SPoF). This replication can also be used to
distribute tasks across multiple machines, leading to significant performance im-
provement and parallelize tasks.

To understand distributed systems, it is essential to grasp some fundamental
concepts such as: Concurrency, Consistency and Fault Tolerance. Nodes in a dis-
tributed system need to communicate with each other to exchange information and
coordinate activities. This involves designing efficient communication protocols and
handling potential network delays and failures. Concurrency in a distributed system
involves multiple tasks running concurrently on different nodes. It requires manag-
ing issues and caveats regarding synchronization and communication in what is es-
sentially an asynchronous system. Consistency is a challenging problem: ensuring a
consistent view of the data or state across the distributed nodes. This can be achieved
though distributed transactions and data replication. Fault Tolerance is mandatory
as a distributed system must be designed to handle arbitrary nodes failures, up to
a certain threshold, and stay functional. Fault tolerance is achieved through clever
algorithms, redundancy, replication and fault detection when possible.
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2.2 Consensus

Consensus is a fundamental problem in distributed systems, playing a pivotal role
in ensuring that a distributed system of nodes can agree on a single, consistent value
or decision, even in the presence of failures or unreliable components. In distributed
systems, nodes often need to agree on critical decisions, such as electing a leader,
committing a distributed transaction, or reaching a consensus on a specific value or
order of events. Achieving consensus is challenging because neither the participants
nor the network can be trusted. Nodes can crash, experience network failures, or
exhibit Byzantine faults, making it difficult to ensure that a majority of nodes are
available to reach a consistent decision. Here lies most of the challenge of reaching
consensus in distributed systems: in an asynchronous network it is impossible to
differentiate between a genuine crash, a Byzantine fault or an arbitrary long network
delay when waiting for a response from another node.

2.2.1 Consensus Algorithms

Several consensus algorithms have been developed to address the challenges posed
by distributed systems. Some of the most well-known consensus algorithms include:

• Practical Byzantine Fault Tolerance (PBFT) (Castro and Liskov, 1999): PBFT is
designed to tolerate Byzantine faults and is commonly used in permissioned
blockchain networks like Hyperledger Fabric.

• Paxos (Lamport, 2001): Proposed by Lamport, Paxos is a widely used consen-
sus algorithm known for its elegance and rigor. It forms the basis for many
distributed systems, including Apache ZooKeeper and Google’s Chubby.

• Raft (Ongaro and Ousterhout, 2014): Raft is another consensus algorithm de-
signed for simplicity and understandability. It focuses on ease of implementa-
tion and is often used in distributed databases like etcd and CockroachDB as
well as blockchain systems.

• HoneyBadgerBFT (Miller et al., 2016): HoneyBadgerBFT combines asynchronous
Byzantine fault tolerance with cryptographic techniques to achieve consensus.
It is currently used in some blockchain and cryptocurrency systems.

2.2.2 Challenges and Trade-Offs

While consensus algorithms address the need for agreement in distributed systems,
they also introduce challenges and trade-offs. The key considerations revolve around
complexity, scalability and latency. Achieving consensus may introduce additional
latency into the system operations, particularly in algorithms based on the notion
of committee, which rely on multiple rounds of communication. The complexity of
such algorithms must also be taken into account, as lowering latency through an
efficient implementation may favor the introduction of unwanted bugs at the core
of the system. Most consensus algorithms do not scale linearly with the number
of nodes, since they have a limited scalability and the decentralization can only be
extended up to a certain point imposed by technical and mathematical limitations.
The famous CAP theorem (Brewer, 2000) states that between the core properties of
consistency, availability and security, any distributed system may only ensure two of
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them, sacrificing the third one. All the algorithms mentioned in 2.2.1 sacrifice avail-
ability. In other words, the system will halt if it is unable to ensure a consistent and
secure workflow.

2.3 Blockchain Systems

Blockchain technology is a prime example of a distributed system that has gained
immense popularity in recent years. In this section, we explore how blockchain sys-
tems operate as distributed systems, starting with an overview of their basic com-
ponents and concepts.

2.3.1 Blockchain Data Structure

At the core of every blockchain system are two fundamental data structures: blocks
and transactions. A Transaction is a cryptographically signed action or operation
recorded on the blockchain leading to a transition in the overall state of the sys-
tem. Most blockchain systems bundle transactions into blocks. Blocks can be seen
as containers for transactions, cryptographically linked to a parent block to form the
chain. Each block typically includes a reference to the previous block called its par-
ent block and is uniquely identifiable though its hash. Blockchain systems maintain
a distributed ledger, also referred to as state, that records these ordered transactions
in a way that is secure, transparent, and tamper-resistant.

The data structure of a blockchain maintained by a participant can be modeled
as a dynamic append-only tree, where each block bi contains a cryptographic refer-
ence to its previous block bi−1 (Figure 2.1). b0 is the root block known as the genesis
block and bh is the furthest block from the genesis block which is referred to as the
blockchain head.
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FIGURE 2.1: The blockchain data structure starts with a genesis block
b0 and cryptographically links successive blocks in reverse order of

their block numbers.

A block bi−1 can have multiple children blocks, which causes a situation called a
f ork. One of the chains is then selected as the main chain according to the blockchain
protocol used. All chains other than the main chain are called side chains. If, at any
time, there exists more than one main chain candidate (i.e., there are multiple heads),
the blockchain is said to be inconsistent. This situation disappears when a new block



16 Chapter 2. Background

extends one of these side chains. The blocks on the other branches are discarded and
referred to as stale blocks.

Technically speaking, all participants store unconfirmed transactions in their own
memory pools and confirmed transactions in their local blockchains (Figure 2.2).

FIGURE 2.2: Representation of a blockchain system.

Basically, there are two main types of participants for all types of blockchain
systems: users and block proposers. Users create transactions with a fee and then pro-
pose them by diffusing across the blockchain network to be confirmed (i.e., totally
ordered and cryptographically linked to the blockchain). Each participant, receiv-
ing the proposed transaction, validates and diffuses it to its own neighbors. After
receiving a certain number of transactions, block proposers select transactions to con-
firm and order them by creating a dedicated block through a blockchain consensus
mechanism, e.g., Proof-of-Work (PoW), Proof-of-Stake (PoS), Delegated Proof-of-
Stake (DPoS), Byzantine Fault-Tolerance (BFT); for a review see (Bano et al., 2019;
Wang et al., 2019). Depending on the mechanism used and the blockchain technol-
ogy, block proposers are referred to as miners (Nakamoto, 2008), validators (Wood,
2014), bakers (Goodman, 2014), orderers (Androulaki et al., 2018), committee mem-
bers (Buchman et al., 2018) etc. respectively. The successful block proposer proposes
its block by diffusing it to the network to be appended to the local blockchains. Each
participant receiving the proposed block validates it against its local blockchain and
diffuses it to its own neighbors. Upon inclusion of its block by all participants, the
corresponding successful Block Proposer is rewarded by R + Fi where R is a static
block reward and Fi is the total amount of fees of transactions included in the block
i. This way, user and block proposer participants altogether maintain a shared data
structure referred to as the blockchain.

Although blockchains initially only provided cryptocurrency related operations,
the support of Turing-complete Smart Contracts (SC) that encode arbitrary data pro-
cessing logic has been introduced in 2014 (Wood, 2014). With this advancement,
blockchains evolved from merely cryptocurrency platforms to distributed transac-
tional and logical systems. In smart contract enabled blockchains, transactions con-
sisting of smart contract invocations are executed by all participants willing to con-
tinuously maintain the blockchain state. Today, such blockchain systems can be con-
sidered as world-scale decentralized computers, Ethereum (Buterin, 2014) being the
most well-known example.
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2.3.2 Decentralized Applications

Smart contracts allow anyone to create user defined secure applications, called De-
centralized Applications (DApp), that exist and run on an underlying blockchain
system. Many DApps such as exchanges, money loans, games, or payment termi-
nals are already being used today (Cai et al., 2018).

Recently, DApps are being increasingly utilized in performing financial functions
(e.g., lending or borrowing funds, going long or short on a range of assets, trad-
ing coins) on blockchain systems, called Decentralized Finance (DeFi) applications
(Werner et al., 2021). A popular application area of DeFi is Decentralized Exchange,
(DEX) (Foundation and Development, 2019) where participants trade assets. A DEX
application relies on a smart contract called a Liquidity Pool, which is responsible for
locking funds and providing currency availability (aka: liquidity) to its participants.
This way, the participants can invest their money and contribute to the DEX (or any
other system relying on that pool) in exchange for interests over time. Another ex-
ample of DeFi is the Borrow/Lend application which uses also Liquidity Pools to
allow participants to borrow in the currency of their choice if available, without re-
quiring a central institution such as a bank.

Besides individual usage, real entities like companies can use DApps to repre-
sent and regulate themselves securely and autonomously. The collection of such de-
centralized applications is called a Decentralized Autonomous Organization (DAO)
(El Faqir et al., 2020). Thanks to the smart contracts, a company represented as
a DAO can work with external partners and execute commands based on them
without any human intervention. An example of a DAO is Pie DAO (PieDAO,
https://www.piedao.org/, accessed on 23 June 2021) which is a decentralized
asset allocation system aimed at automating wealth creation. Users can create, join
or leave allocations (i.e., investment diversification plans). Participants will vote for
or against the allocations of their choice. Pie DAO is effectively bringing crowd wis-
dom to the investment world.

2.3.3 Oracle in Blockchain Systems

In a blockchain system, by design, there is no proper way to add external informa-
tion in a trusted manner. Either the provider or the data itself is trusted. There-
fore, any interaction between the blockchain and the outside world contradicts the
blockchain trustless philosophy. However, to leverage the power of the blockchain
technology and, more specifically, smart contracts, such interactions are often neces-
sary and desired.

The current solution is to use oracles (Blockchain Oracles, https://blockchain
hub.net/blockchain-oracles/, accessed on 2 July 2021): participants bridging the
blockchain system with the outside world (i.e., Web Services, sensor data stream,
etc.). The issue of having such trusted entities and the related vulnerabilities in pub-
lic blockchain systems have already been discussed as the Oracle problem (Caldarelli,
2020; Lo et al., 2020).

2.3.4 Permission Models in Blockchain

Blockchain networks can be categorized into different permission models based on
who is allowed to participate in the network and validate transactions. The three
primary permission models are:

https://www.piedao.org/
https://blockchainhub.net/blockchain-oracles/
https://blockchainhub.net/blockchain-oracles/
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Public Blockchains

Public blockchains are open and permissionless networks, allowing anyone to par-
ticipate as a node in the Peer-to-Peer (P2P) network. They are highly decentralized
as no single entity controls the network; nodes validate transactions through the
consensus mechanism. Due to this decentralization, they exhibit high censorship
resistance, as one would need to control an overwhelming proportion of the net-
work to effectively censor anyone. Since they are public, they provide the maxi-
mum level of transparency: any transaction or data is public and therefore visible
to anyone. Transparency is a key element for both trust and monitoring in public
blockchains. Bitcoin (Nakamoto, 2008) and Ethereum (Buterin, 2014) are the most
well known examples of public blockchains. In this thesis, we will mostly focus on
public blockchains.

Consortium Blockchains

Consortium blockchains are semi-private networks where a predefined group of
participants, often businesses or organizations, collectively validate transactions.
Such blockchains are said to be semi-decentralized, since they are more central-
ized than public blockchains but less than private ones. A selected group of distinct
trusted entities may validate transactions and create blocks. Access to a consortium
blockchain is often conditioned on receiving permission by one or several members
of the consortium. Comparatively to public blockchains, the low number of entities
taking part in block creation allows higher throughput. This is effectively a trade-off
where decentralization and distribution is exchanged in favor of efficiency, making
them suitable for enterprise applications. Several consortium blockchains already
exist today, such as Hyperledger Fabric (Androulaki et al., 2018).

Private Blockchains

Private blockchains are fully controlled and operated by a single entity or organi-
zation and are by definition centralized. They can provide a high level of privacy
since they can be used for, and within, a closed system, therefore providing privacy
to both the owning organization and the participants. Such blockchain permission
schemes can be used in supply chain management or record-keeping.

2.3.5 Consensus in Blockchain Systems

Here, we discuss the most well known consensus mechanisms in blockchain sys-
tems, namely Proof of Work and Proof of Stake, thus providing a high level overview
of what the goal of the consensus is in a public blockchain system. In a blockchain
system, the goal of the consensus is to allow the participants of the system to come
to an agreement about the block considered as the head of the chain, which in turn
defines the canonical chain.

Proof of Work (PoW)

Proof of Work (PoW) is a consensus mechanism or algorithm used in blockchain
networks to validate and secure transactions and add new blocks to the blockchain.
It was first introduced as a fundamental component of Bitcoin (Nakamoto, 2008) by
its pseudonymous creator, Satoshi Nakamoto. PoW plays a crucial role in preventing
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various security threats, ensuring network integrity, and regulating the creation of
new blocks in a decentralized manner.

The revolution of Bitcoin lies in PoW in the sense that the nodes come to a con-
sensual view of the state of the system in a probabilistic way.

In a PoW-based blockchain network, participants, known as "miners," compete to
solve complex mathematical puzzles. These puzzles are computationally intensive
and require substantial computational power, and thus energy consumption. Miners
collect a set of unconfirmed transactions with the highest fee from the network users
and bundle them into a candidate block, which they aim to add to the blockchain.
These unconfirmed transactions represent a collection of user-generated transactions
waiting to be processed. To add a new block to the blockchain, miners must find a
specific value, called a "nonce", that, when combined with the candidate block’s
data and hashed, produces a hash value that meets specific criteria. This criteria
typically involves generating a hash that starts with a certain number of leading
zeros. Achieving this requires miners to repeatedly guess and compute the hash
value until they find one that meets the criteria.

Miners compete against each other to find this nonce, as the first miner to solve
the puzzle gets the opportunity to add the new block to the blockchain. This pro-
cess is known as "mining." It is important to note that the chances of finding the
correct nonce are purely based on computational power, making it a probabilistic
process. Miners with more computational resources have a higher probability of
finding the correct nonce. Once a miner finds a valid nonce and successfully hashes
the candidate block to meet the required criteria, they broadcast the solution to the
network. Other nodes in the network can easily verify the correctness of the solu-
tion by recomputing the hash. If the solution is valid, the new block is added to
the blockchain, and the miner is rewarded with cryptocurrency tokens (e.g., Bitcoin)
and any transaction fees included in the block. There is no committee in PoW, the
chain may happen to have several blocks at the same height at some point, which is
referred to as a fork. With a non-zero probability, one chain will eventually outpace
the other and the honest nodes will only mine and extent on the longest chain, as
per what is known as the fork choice rule.

PoW is known for its robust security and simplicity of implementation. For an
attacker to alter a block’s contents or create fraudulent transactions, they would need
to control a majority of the network’s computational power, which is extremely diffi-
cult and costly. PoW is also the only self-healing (Badertscher et al., 2020) consensus
mechanism known to date for blockchain systems. The byzantine security threshold
for PoW usually lies at 51% of the total computational power. If a participant or
group of participants goes beyond this threshold, they can decide which chain will
become the longest one by simply dedicating all their computational power to mine
on it. Reaching this threshold, while not impossible, is near impossible for a well
established chain such as Bitcoin.

PoW encourages decentralization because anyone with computational resources
can participate in the mining process, making it challenging for a single entity to
monopolize the network. PoW rewards miners for their computational effort, and
the process of finding the nonce is theoretically a fair competition. Miners are incen-
tivized to play because they are assumed to be rational and have invested resources
in mining equipment and electricity. Implementation details may open vulnerabil-
ities that rational miners will naturally exploit as they are looking to increase their
profitability. The most well known example of such an issue is the Selfish Mining
(Eyal and Sirer, 2014) strategy.
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However, PoW also has some notable disadvantages, including high energy con-
sumption due to the intensive computational work involved, which has led to envi-
ronmental concerns. As a response to these concerns, alternative consensus mecha-
nisms, like Proof of Stake (PoS), have been developed to reduce energy consumption
while maintaining network security.

Proof of Stake (PoS)

Proof of Stake (PoS) is a consensus mechanism used in blockchain networks such as
Ethereum 2.0 (Buterin et al., 2020) and Tendermint (Kwon, 2014), as an alternative
to Proof of Work (PoW). While PoW relies on computational power and energy-
intensive mining, PoS is designed to be more energy-efficient and environmentally
friendly.

In PoS, validators (often referred to as "stakers") are chosen to create and validate
new blocks based on the amount of cryptocurrency tokens they hold and are willing
to "stake" as collateral. So, validators are selected to create new blocks and validate
transactions based on their stake in the network. The more tokens a participant is
willing to "lock up" as collateral, the higher the chance they have of being chosen as
a validator.

PoS is designed to be secure against various types of attacks, including the infa-
mous "51% attack" that can affect PoW-based networks. In a PoS system, an attacker
would need to acquire a majority of the network’s total staked tokens, which can be
prohibitively expensive and challenging.

PoS is often considered more environmentally friendly than PoW, as it does not
require the massive computational power and energy consumption associated with
mining.

PoS encourages decentralization by allowing anyone with a stake to participate
in block creation and validation. It does not favor those with expensive mining
equipment, but is arguably less accessible than PoW, since users willing to partici-
pate must buy the collateral.

PoS provides robust security against certain types of attacks, making the net-
work resistant to control by a single malicious entity. Validators in PoS systems are
economically incentivized to act honestly and in the best interest of the network, as
they have a financial interest in the system’s long term stability. Failing to do so may
lead to some of their collateral to be confiscated.

While PoS offers several advantages, it is not without its challenges and con-
siderations. These may include issues related to initial token distribution, potential
centralization of wealth, and the need for mechanisms to prevent "nothing at stake"
problem (Li et al., 2017). PoS is a significant departure from PoW, and its effective-
ness depends on the specific design and rules of the blockchain network implement-
ing it. It is worth noting that major blockchain networks, such as Ethereum, are
transitioning from PoW to PoS to reduce their environmental impact and improve
scalability.

2.3.6 Incentives

Public blockchains must provide incentives for their participant to stay active and
respect the agreed upon rules of the system. Those incentives mostly consist in the
block reward, and the transaction fees.
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The block reward, also referred to as coinbase transaction, is a reward given to
the producer of a given block for its work to extend the blockchain. This block re-
ward is defined in the algorithm, so that its modification is often a significant event,
since this directly impacts the economic incentive of the participants maintaining
and extending the blockchain. In the Bitcoin network, such an event is known as
a halving (Meynkhard, 2019). To improve their block creation capabilities, block
proposers may invest either in hardware, capital or other agents depending on the
consensus mechanism used. For example, in a PoW blockchain they can invest in
new hardware since the more computational power they have, the easier they can
create blocks. In a PoS blockchain, they can invest in the stakes, since the more
locked stakes they have, the more chance to enter the committee. In addition to PoS,
in DPoS blockchains, they can also invest in other block proposers by delegating
their stakes.

On the other hand, transaction fees depend on the network activity. So, users
who want their transactions to be processed within a defined period of time will
have to provide a greater fee under high network load. This competition between
non-contributing users gives rise to what is known as the "fee market".

Since block producers are rational, they ought maximize their profit by both in-
creasing their block creation chances and to select the pending transactions with the
highest fees.

This thesis heavily focuses on the notion of incentive within a system of rational
participants. Any flaw in the incentive design may encourage unwanted behaviors
that can ultimately have devastating consequences for the system.

2.4 Reinforcement Learning (RL)

Reinforcement Learning (RL) (Sutton and Barto, 2018) is a type of machine learning,
not requiring prior / expert knowledge, where an agent learns to make sequences
of decisions by interacting with an environment. It is primarily used in scenarios
where the agent’s actions influence its future rewards.

RL is highly versatile and can be used in various use-cases from Chess and Go
(Silver et al., 2016), self-driving vehicles (Liang et al., 2018) or even supply chain
management (Giannoccaro and Pontrandolfo, 2002).

The growth in popularity of RL in the last 15 years can indubitably be attributed
to innovations leading to the birth of deep reinforcement learning (Mnih et al., 2013).

2.4.1 Markov Decision Process (MDP)

At the core of RL is the Markov Decision Process, which consists of the following
components:

• State Space (S): The set of all possible states in the environment.

• Action Space (A): The set of all possible actions the agent can take.

• Transition Probability Function (P): Describes the probability of transitioning
from one state to another after taking a particular action.

• Reward Function (R): Provides a numeric reward for each state-action pair.

The agent interacts with the environment by taking actions, and its goal is to find
a policy that maximizes its reward.
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A policy (π) is a strategy that maps states to actions. It can be deterministic
or stochastic. The goal of RL is to find the optimal policy, denoted as π, which
maximizes the expected cumulative reward G over a potentially infinite horizon of
interactions with the MDP.

G = E[
∞

∑
t=0

γtR(at, st)P(st+1|st, a)] (2.1)

Knowing that at is given by the current policy π, the previous equation can be
rewritten to:

G = E[
∞

∑
t=0

γtR(π(st), st)P(st+1|st, a)] (2.2)

Where γ ∈ [0, 1] is called the discount factor: it controls the horizon at which
rewards are taken into account. A γ value of 1 means that all rewards are considered
regardless of how far they are. A lower γ value restrict the rewards being considered
to a finite horizon.

2.4.2 Estimating the expected rewards with a Value Function

There exist two value functions in RL:

State-Value Function

The state-value function Vπ(s) represents the expected cumulative reward when fol-
lowing policy π starting from state s. It can be computed using the Bellman equa-
tion:

Vπ(s) = ∑
a

π(a|s)
(

R(s, a) + γ ∑
s′

P(s′|s, a)Vπ(s′)

)
(2.3)

Action-Value Function (Qπ)

The action-value function Qπ(s, a) represents the expected cumulative reward when
starting from state s, taking action a, and then following policy π. It can also be
computed using the Bellman equation:

Qπ(s, a) = R(s, a) + γ ∑
s′

P(s′|s, a)∑
a′

π(a′|s′)Qπ(s′, a′) (2.4)

2.4.3 The Need For A Model

Several algorithms were created using only the definitions above. The most well
known ones are arguably value iteration (Bellman, 1957) and policy iteration (Howard,
1960). Still, they do have a strong constraint for real world applications: the underly-
ing MDP must be known. They are therefore classified as model-based approaches.

In many potential applications, the model is either too complex to be modeled as
an MDP or simply unknown.

A second kind of approach, called model-free, aims at learning the policy π that
maximizes G without relying on a model of the environment. One of the first suc-
cessful model-free algorithm is Q-Learning (Watkins and Dayan, 1992).
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2.4.4 Model Free Algorithms

Q-Learning (Watkins and Dayan, 1992) is a popular tabular RL algorithm for finding
an optimal deterministic policy without relying on a model of the environment. It
only uses the Q value function and updates it repeatedly as follows:

Q(s, a)← Q(s, a) + α

(
R(s, a) + γ max

a′
Q(s′, a′)−Q(s, a)

)
(2.5)

Where α is the learning rate, which defines how much the current estimate Q(s, a)
is to be updated according to the error R(s, a)− Q(s, a) and the expected reward of
following the current policy π(s) = arg max

a
Q(s, a).

This algorithm is said to be off-policy, because the learning step samples the next
action from a different policy, maxa′ Q(s′, a′), than the one currently being learned.

The SARSA (Rummery and Niranjan, 1994) algorithm is very similar with the
key difference that it is on-policy as it does not sample the next action greedily, but
strictly follows the current policy with Q(s′, a′).

Both Q-Learning and SARSA have been proven to converge (Watkins and Dayan,
1992) as long as all (s, a) tuples are eventually sampled, which is equivalent to say
that it converges as long as the algorithm is given a chance to fully explore the envi-
ronment it is trying to learn.

The practical solution is to follow an ϵ greedy policy: a random action is sampled
with probability ϵ, and the greedy policy is followed with probability 1− ϵ, leading
to each state-action pair being visited.

This poses the crucial question of when to stop exploring and start exploiting a
policy in an unknown environment, also known as the Exploration vs. Exploitation
dilemma.

2.4.5 Exploration vs. Exploitation

Balancing exploration (i.e., trying new actions) and exploitation (i.e., choosing ac-
tions with known high rewards) is a fundamental challenge in RL (Ishii et al., 2002).
Given an infinite amount of time, it is equivalent to knowing when an individual or
algorithm has nothing more to learn from its environment. In a more realistic and
constrained time setup, this is a trade-off that must be carefully managed to maxi-
mize performance while minimizing the time spent learning from the environment.

2.4.6 Continuous State Space

The aforementioned algorithms are all tabular, they maintain a table of N states per
M actions and update the estimates Q(s, a) during the learning process. This ap-
proach is impractical for large spaces and simply impossible for continuous ones.
The rise of deep neural networks allowed a first innovation, which was to represent
the Q function by a neural network under the name of Deep Q Learning (DQN)
(Mnih et al., 2013).

The neural network is repeatedly optimized to minimize a sequence of loss func-
tions, each representing an expected cumulative reward error for a particular step.

Given that the Q function can now be a differentiable deep neural network, it is
thus possible it use continuous actions with the DDPG (Lillicrap et al., 2016) algo-
rithm.

This algorithm combines ideas from both policy-based and value-based approaches
in what is known as the Actor-Critic method (Grondman et al., 2012).
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The implicit policy π(s) is replaced by a neural network (i.e., the Actor) that
is trained through experiences so that it minimizes the bellman error from the Q
function (i.e, the Critic).

2.5 Multi-Agent Reinforcement Learning (MARL)

Multi-Agent Reinforcement Learning (MARL) extends RL to scenarios with multiple
interacting agents, each with their own goals and actions. In MARL, agents learn to
collaborate or compete in a shared environment. This gives rise to new difficulties
and instabilities, given that the actions of one agent can influence the performance
of all others (Busoniu et al., 2008).

2.5.1 Challenges in MARL

The introduction of one or several additional agents, cooperating or competing, has
a significant impact on the learning process. Since any individual agent is no longer
the only one to influence the environment, its performance can be degraded with-
out any changes to its policy, because of others’ actions. This is known as non-
stationarity (Papoudakis et al., 2019).

Non-stationarity can lead to difficult learning processes or even oscillating be-
haviors, sometimes preventing convergence because of the overly complex multi-
agent interactions (Matignon et al., 2012; Zhang et al., 2021).

2.5.2 Approaches to MARL

MARL can be approached in several ways depending on the problem at hand.
The learning can be centralized (i.e., agents share a single critic and / or policy,

akin to a hive mind) or decentralized (i.e., agents are independent entities with their
own policies) (Lyu et al., 2021).

The environment may require cooperation, competition or a mix of both, involv-
ing some form of communication and coordination between policies that are being
optimized in parallel.

The algorithms can be tailored for specific settings such as MADDPG (Lowe et
al., 2017), which is a centralized, synchronous, cooperative, multi-agent version of
DDPG that aims to alleviate non-linearity by providing each agent knowledge about
the current Critic of all others.

In the scope of this thesis, the synchronicity assumption does not hold. Decen-
tralized systems such as blockchains are asynchronous by nature, and we will fo-
cus either on decentralized MARL with no common knowledge assumptions, also
known as Independent Q-Learning, or on hive mind approaches when different
agents share a single policy.

2.5.3 Applications of MARL

MARL has a wide range of applications in various fields such as :
Robotics : where MARL is used extensively to coordinate groups of robots. A

prime example if this would be swarm robotics where multiple robots collaborate
on a specific task consisting in exploration, mapping or search-and-rescue (Blais and
Akhloufi, 2023). Autonomous and semi autonomous vehicle: make use of MARL
for complex decision making in multi-agent traffic scenarios (Zhou et al., 2021).
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The gaming and simulation industry : benefits from MARL, which has been used
to develop agents that can compete or cooperate in complex multi-player games
such as Dota 2 (OpenAI et al., 2019).

Resource management: where MARL can be used to optimize both resources al-
location and usage. This includes applications in power grid management (Chen
et al., 2021), where agents manage energy production and distribution. and is eas-
ily transposable to the digital world with network traffic management (Foerster et
al., 2016), where agents control the flow of data through a network, maximizing
throughput and minimizing latency.

Economics and finance: also apply MARL to model and simulate interactions
between different market participants (Liu et al., 2022).

Smart cities and Internet of Things(IoT) : It is used to manage urban infrastruc-
ture, such as traffic light control (Damadam et al., 2022) or public transportation sys-
tems (Chen et al., 2016), where multiple independent agents represented by sensors
or vehicles need to make real-time decisions.
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Chapter 3

AGR4BS: Agent, Group, Roles for
Blockchain Systems

In this chapter, we discuss the design choices and definition of AGR4BS (Roussille
et al., 2022), a generic blockchain model intended to solve the modeling complexity
when faced with blockchain systems as numerous as they are diverse. AGR4BS will
be used as the groundwork for the subsequent contributions of this thesis. Under-
standing this modeling is paramount in order to fully grasp the taxonomy and the
design of the simulator that it inspired, both of which will be defined in the follow-
ing chapters.

3.1 Related Work

A model is an abstraction of some aspects of an existing or planned system. Models
serve particular purposes, that is, for example, to present a human-understandable
description of some aspect of a system or information in a form that can be efficiently
analyzed. In the blockchain context, there are very few studies that directly target
the modeling issue at a high level of abstraction (Gürcan, 2020; Gürcan, 2019).

This does not mean that there is no model for blockchain systems. Based on
the existing studies in the blockchain literature, we identified the following model-
ing paradigms: process-oriented, object-oriented, graph-theoretic and agent-oriented
paradigms. In the following, we describe each paradigm by showing how they
model participants (i.e., users and Block Proposers), interactions, behaviors, and data
structures (e.g., blockchains, transactions) using the abstractions they provide.

3.1.1 Process-Oriented Paradigm

In process-oriented paradigm (aka distributed programming paradigm), a system
encompasses multiple distributed processes1 connected with communication links (aka
channels) that cooperate on some common task (e.g., shared memory or consensus) (Cachin
et al., 2011):

• Processes execute the distributed algorithm assigned to them through a set of
components implementing the algorithm within these processes.

• Channels allow processes to broadcast messages by triggering events.

• A shared memory allows local direct access to a resource from possibly many
processes.

1A process abstraction may represent a physical or virtual computer, a processor within a computer,
or a specific thread of execution in a concurrent system.
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• Consensus mechanisms aim at providing a way for processes to agree on a com-
mon decision / outcome under a decentralized framework.

This paradigm aims at building and/or analyzing systems which are dependable
(offering reliability and security) and have predictable behavior even under negative
influence from the environment (offering tolerance to faults).

Many studies use this paradigm to analyze2 and/or build3 blockchains using
the following related abstractions: participants (e.g., users and Block Proposers) are
modeled as processes, interactions as channels, the blockchain as a shared memory and
deciding on a common block is represented by using consensus abstractions.

For instance, (Eyal and Sirer, 2014) shows that some Block Proposers in a Bitcoin
blockchain (aka miners) can deviate from their nominal behaviors, thus acquiring an
unfair advantage which consequently decreases the dependability of the system.

(Neuder et al., 2020) builds and improves on both (Eyal and Sirer, 2014) and
(Sapirshtein et al., 2016) by providing a hybrid strategy deviating at both the block
creation and the networking levels, effectively achieving the unfair advantage for
miners while leading other agents to work for the deviating miners.

3.1.2 Graph-Theoretic Paradigm

The Graph-Theoretic Paradigm focuses on topology and therefore on connective
properties of algebraic / mathematical objects. In the context of distributed com-
puting, these objects are generalizations of graphs, and their connectivity properties
related to the computability of distributed algorithms.

Exploiting certain topological properties of higher dimensional geometric objects
to prove results of distributed algorithms is referred to as the topological approach
to distributed computing. Techniques from combinatorial and algebraic topology
have advanced characterization of synchronous and asynchronous distributed algo-
rithms, as well as their solvability (Alpern and Schneider, 1985; Herlihy and Rajs-
baum, 1995; Nowak, 2010; Saks and Zaharoglou, 1993). In graph theory, a vertex
is a point in a graph. Vertices are linked together by edges that represent a relation
between two vertices.

In this paradigm, the participants are modeled by using vertices, the transactions
using edges, the interactions using simplex and/or face abstractions and frauds as
spatio-temporal pattern abstractions.

The ability of sheaf-theoretic frameworks to decipher global information from
local information has led to a diversity of applications, such as those that have been
further proposed to model concurrent processes in distributed systems (Malcolm,
2009), semantics for object-oriented programming languages (Wolfram and Goguen,
1991) and representations of information systems (Sagar and Kishore, 2019). In
(Meldman-Floch, 2018), the author explores topological models of distributed com-
puting for scalability focused Blockchain technologies. To do so, the author models
a block as a sheaf and develops a theory for distributed consensus protocols.

2(Anceaume et al., 2019; Decker et al., 2016; Eyal and Sirer, 2014; Garay et al., 2015; Neuder et al.,
2020; Sapirshtein et al., 2016)

3(Androulaki et al., 2018; Gilad et al., 2017; Herlihy, 2018; Kwon, 2014; Nakamoto, 2008; Wood,
2014)
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3.1.3 Object-Oriented Paradigm

In object-oriented paradigm, a system is composed of multiple objects (instances of
classes) interacting with local or remote method invocations (message passing) (Lar-
man, 2004).

Classes have specific responsibilities and encapsulate data (in the form of attribute
abstractions) and code (in the form of method abstractions) that manipulates these
data, and are related to each other using association abstractions.

This paradigm aims at building and/or analyzing systems which are evolvable
(i.e., easy to extend) and maintainable (i.e., easy to fix).

Few studies explicitly use this paradigm in the blockchain literature. Examples
are (Alharby and Moorsel, 2020; Marchesi et al., 2020; Rocha and Ducasse, 2018)4. In
these studies, the participants are modeled as class, interactions as associations, the
blockchain as a class and deciding on a common block as method abstractions.

For instance, (Alharby and Moorsel, 2020) proposes a generic PoW blockchain
model with the aim of building an extensible blockchain simulator. Currently, they
are able to model and simulate both Bitcoin and Ethereum 1.0 and validate their re-
sults against historical data. They are compatible with PoS blockchains, given a few
modifications. As another example, (Marchesi et al., 2020) proposes a notation based
on UML (Filho and Braga, 2017) for supporting smart contract design. Concretely,
they add stereotypes for UML Class and Sequence diagrams to better express the
entities and the interactions between them.

3.1.4 Agent-Oriented Paradigm

In an agent-oriented perspective, a system is composed of multiple autonomous agents
that are able to perceive their environment, reason independently (either reactively or
proactively) and act upon their environments (Ferber, 1999; Wooldridge, 2009), thus
forming a so-called Multi-Agent System (MAS). This paradigm especially aims at
building and/or analyzing systems which have some degree of openness, autonomy,
intelligence and complexity.

An agent is an entity of the system that is relying on some degree of autonomy
in order to pursue its goal or fulfill its functionality, either passively or actively. Co-
ordination is the mean by which agents exchange information or resources in the
pursuit of an objective.

MAS modeling can be considered according to two main perspectives: agent-
centric and organization-centric. While the former focuses on the agent’s internal
architecture, the latter points on the structure of the system, and firstly considers
agents as empty shell, in order to thus focus on the MAS organizational aspects.

Many studies use this paradigm in an agent-centric sense to analyze blockchains
(Amoussou-Guenou et al., 2020; Ciatto et al., 2020a,b; Hou et al., 2021; Toroghi
Haghighat and Shajari, 2019; Wang et al., 2021a; Zhang et al., 2020; Zhang et al.,
2019). In these studies, the participants are modeled as agents, interactions as coordi-
nation abstractions, the blockchain is modeled as a shared knowledge and deciding on
a common block is modeled by using goal, strategy or game abstractions.

As an example, (Hou et al., 2021) takes a generic Reinforcement Learning (RL)
approach to detect attacks on different blockchain systems through RL based sim-
ulations and strategy search, while being fairly constrained to the block creation

4In fact, (Rocha and Ducasse, 2018) uses the Entity Relationship (ER) model, but since ER is a mental
model which is similar to object-orientation, we grouped them in the same category.
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processes in PoW blockchains as well. The aim is similar to (Eyal and Sirer, 2014),
that is, discovering attack vector and weaknesses in the blockchain.

While this search is experimental in contrast to analytical, it is able to grasp some
of the multi-agent interactions and limitations arising from many heterogeneous
agents each pursuing a specific goal.

As another example, (Zhang et al., 2020) focuses on meta-agents, that is agents
acting on several blockchain hyper parameters to balance a security/throughput
trade-off as a way to optimize the blockchain performance while preserving the se-
curity and dependability of the system through RL.

3.1.5 Discussion

Models provide abstractions used to represent and communicate what is important,
without unnecessary detail, and help to cope with the complexity of the problem
studied or the solution developed. Consequently, it is crucial to use an adequate
modeling approach. Considering the previous literature, one can see that all exist-
ing blockchain modeling approaches are elaborated having in mind some specific
aspects and /or problems of blockchain systems (e.g., network topology targeted
studies tend to use the graph-theoretic paradigm), which in turn makes them spe-
cific so that they cannot be applied to others easily.

3.2 Organization-centric Modeling for Blockchain Systems

In this section, we first describe the motivations behind using an organization-centric
modeling for blockchain systems (Section 3.2.1), then present the chosen organiza-
tional model, namely Agent/Group/Role (AGR), for defining our generic organiza-
tional model for blockchain systems (Section 3.2.2) and finally describe the method-
ology we used for applying AGR (Section 3.2.3).

3.2.1 Motivations behind Organization-centric Modeling

Since blockchain systems are social systems (as shown in Chapter 2), organizational
modeling provides relevant abstractions with respect to what blockchain systems
actually are.

Indeed, organization-centric modeling abstracts away the internal details (i.e., the
cognitive capabilities) of agents, and thus allows focusing on the structural, organi-
zational and social dimensions of blockchain systems, that is on what relates the
structure of an organization to the externally observable agent behaviors.

Representing blockchain systems using the organization abstraction allows agents
to cooperate with each other by defining common cooperation schemes like respon-
sibilities, groups, protocol and global tasks. For example, deciding on a common
block on a blockchain system is an institutional action only possible because the
blockchain system defines the rules that must be followed to do so.

Additionally, norms can be used to constraint the behaviors of independent agents
towards the global goal of the organization. In other words, when an agent adopts
a role, it adopts a set of behavioral constraints supporting the global purpose of the
organization. It is then up to the agent to obey or disobey these constraints. For
instance, in a blockchain system, when an agent adopts the user role, it adopts the
behavioral constraints of preparing proper transactions and validating all the data
before relaying.
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Having a specification of the organization allows agents to reason about it. That is
to say, the agents can decide whether to join or leave organizations during their life-
time, can change/adapt their current organizations, and can decide to obey/disobey
the norms of the organization.

Moreover, such an organizational specification may also enable the organization
to reason about itself and about the agents to ensure the achievement of its global
purpose. That is to say, organizations can decide to let agents join/leave during
execution, they can let agents change/adapt their current organizations, and they
can govern the agents’ behaviors (i.e., monitor, enforce, regiment).

3.2.2 The Agent/Group/Role (AGR) Approach

Among the organization-centric multi-agent-oriented approaches proposed in the
literature5, the Agent/Group/Role (AGR) approach proposed in (Ferber et al., 2004)
is a good fit for our motivations and purpose.

Especially, AGR describes what is a MAS organization at a high level of abstrac-
tion and is thus very flexible and open to various interaction schemes and organiza-
tional designs.

The AGR model (Figure 3.1) is based on three first-class abstractions: agent, group
and role (Figure 3.1a). Those abstractions are composable and interact with each
other (Figure 3.1b).

(A) organizational model.
(B) Cheeseboard organizational di-

agram

FIGURE 3.1: Agent/Group/Role representations as a conceptual
model (a) and as a cheeseboard diagram (b).

Roles are abstract representations of functional positions of agents in a group. A
role describes the responsibilities associated to it, the constraints that agents need
to satisfy in order to obtain that role, and the benefits that agents would obtain by
playing that role.

Groups identify contexts for patterns of activities (i.e., roles) that can be shared by
sets of agents (i.e., they group together agents working together). Agents may com-
municate, if and only if, they belong to the same group. Groups are organizational
structures where the interactions make an aggregate of agents a functionally coher-
ent whole. Moreover, groups may establish boundaries as well. Agents that do not
belong to a group may not know its structure.

Agents are active, communicating entities playing roles within groups. Agents
play at least one role in a group, but may hold multiple roles and be a member of
multiple groups as well. However, no constraints are placed upon the architectures,
the cognitive abilities and/or the mental issues of agents.

5(Abbas, 2015; Criado et al., 2013; Dignum et al., 2005; Ferber et al., 2004; Giorgini et al., 2006;
Hübner et al., 2002).
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3.2.3 The Methodology for AGR

In this subsection, we briefly describe the process we use in Section 3.3 to design the
generic organization model based on the AGR approach.

FIGURE 3.2: Proposed methodology for defining our generic organi-
zational model.

Figure 3.2 shows the workflow we use to define our organizational model of
blockchain systems. Our approach is similar to what is presented in (Rodriguez et
al., 2021), with a system point of view on functionalities through System Stories which
are inspired by the AGILE development cycle and help define and refine system
requirements. However, unlike (Rodriguez et al., 2021) we do not restrict ourselves
to a particular role or agent.

We first define the roles which are part of the system, i.e., what high-level func-
tionalities must be present in the system. From those role definitions, we infer the
different groups and how the roles are grouping together to achieve their goals.
When those two steps are done, we elaborate on the roles and define their behaviors,
i.e., what low-level functionality must be present to fulfill the high-level ones. Next,
we define how the roles interact with one another inside a group, i.e., what needs
to be communicated and how it is done. Finally, we define the agent types, which
interaction types they can have and the roles they can play in the system.

3.3 AGR4BS: A Generic Organizational Model for Blockchain
Systems

Using the AGR approach, we hereby propose a generic organizational model for
blockchain systems that acts as a basis for the definition of several concrete blockchain
systems, namely AGR4BS. This way, it is possible to build and/or analyze concrete
blockchain systems which reside at the agent level, i.e., where agents with different
cognitive abilities may interact. This allows for a clear division of the different build-
ing blocks of blockchain systems, while leaving the possibility to explore behavioral
divergence in a well-defined framework.

To this end, we identify all possible roles and their corresponding nominal (hon-
est) behaviors applicable to all types of blockchain systems. The agents participating
in blockchain systems may play one or several generic roles listed below, in possibly
more than one blockchain system at the same time.

3.3.1 Role Types

With respect to existing blockchain systems, we identified nine generic role types
(Figure 3.3). In the following, we carefully assign responsibilities to these role types.
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<<Role>>
Block Proposer

<<Role>>
Transaction Proposer

<<Role>>
Blockchain Maintainer

<<Role>>
Transaction Endorser

<<Role>>
Block Endorser

<<Role>>
Investee

<<Role>>
Investor

<<Role>>
Contractor

<<Role>>
Oracle

FIGURE 3.3: The initial generic blockchain role type model.

Here are the responsibilities for each role :

• Transaction proposer : proposes transactions

• Transaction endorser : endorse endorse the proposed transactions

• Block Proposer : creates and proposes blocks

• Blockchain Maintainer : maintains a local copy of the blockchain and ensure
it’s integrity.

• Investor : invests financial or computational value in the system.

• Investee : receives investments and perform a task on behalf of its investor(s)
in exchange for a commissions.

• Contractor : provides internal services to other participants on a contractual
basis (i.e., Smart Contracts)

• Oracle : provides external services and data feeds to the other participants.

3.3.2 Group Types

In the blockchain systems context, we identified two categories of generic types of
blockchain groups applicable to any kind of blockchain system: Structural Groups
and Interest Groups.

Structural Groups fulfill essential functions of the blockchain system, and all
agents are aware of the existence of these groups. We identified two types of struc-
tural groups: Transaction Management and Block Management.

Interest groups are composed of agents increasing the quality of one or several
properties of the blockchain such as scalability, throughput, security, or reward vari-
ance. Interest groups are therefore not structural (i.e., non-essential) for the overall
blockchain, and their existence is not necessarily known by all participants.

In the following, we give the specification of each group in terms of roles and
their related behavioral primitives.

Structural Group: Transaction Management

This group is responsible for the way transactions in a blockchain network are pro-
cessed. It is composed of four roles: Transaction Proposer, Transaction Endorser, Blockchain
Maintainer and Contractor. Figure 3.4 represents the organizational structure and be-
haviors of this group by visualizing and relating roles and behaviors6. There are

6Note that, the interaction protocols can be represented by any sort of interaction diagram (such as
UML sequence, Petri nets, finite state automaton and so on) in a concrete organization (i.e., blockchain
system) level.
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three high-level meaningful behaviors: Propose transaction, Validate transaction and
Execute transaction.

<<Group>>
Transaction Management

Create 
transaction

Endorse 
transaction

Propose 
transaction

Execute 
transaction

Validate 
transaction

<<Role>>
Transaction

Proposer

<<Role>>
Blockchain
Maintainer

<<Role>>
Transaction

Endorser

«includes»

«includes»

«includes»
«includes»

Store 
transaction

«includes»

Diffuse 
transaction

<<Role>>
Contractor

FIGURE 3.4: The organizational structure and behavior of the Trans-
action Management group.

The high-level nominal scenario of Propose transaction is as follows:

1. Transaction Proposer aims to transfer a value and thus creates a trans-
action by carefully choosing inputs, outputs, and a fee.

2. Transaction Proposer asks Transaction Endorser(s) to validate the trans-
action.

3. Transaction Endorser(s) decide(s) to endorse the transaction using a
transaction endorsement policy and send(s) the endorsement result(s)
to the Transaction Proposer.

4. Transaction Proposer proposes the transaction by diffusing it to Blockchain
Maintainers.

The high-level nominal scenario of Validate transaction is as follows:

1. Blockchain maintainer validates the transaction against the local copy
of the blockchain.

2. Blockchain maintainer stores the transaction in its memory pool if it is
valid.

3. Blockchain maintainer diffuses the transaction by sending it to the
neighboring Blockchain maintainers.

Execute transaction executes a transaction to invoke a Contractor behavior.

Structural Group: Block Management

This group is responsible for the way blocks in a blockchain network are processed.
Figure 3.5 represents the organization structure of this group by visualizing and re-
lating roles and behaviors. It is composed of three roles: Block Proposer, Block En-
dorser and Blockchain Maintainer. The interactions shown in this figure covers the
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principal aspects such as transaction selection, block creation, block endorsement,
block proposal, block diffusion, block validation and block appending that relate
agents through their roles.

<<Group>>
Block Management

Propose 
block

Append 
block

Select 
transactions

Validate
block

<<Role>>
Block

Proposer

<<Role>>
Block

Endorser

<<Role>>
Blockchain
Maintainer

Create block

«includes»

«includes» «includes»

«includes»

«includes»

Endorse 
block

«includes»

Diffuse
block

FIGURE 3.5: The organizational structure and behaviors of the Block
Management group.

The high-level nominal scenario of Propose block is as follows:

1. Block Proposer selects transactions from Blockchain Maintainer using
a selection strategy.

2. Block Proposer tries to create a block using the selected transactions.

3. Block endorser(s) decide(s) to endorse a confirmed block (i.e., a block
that is already in the blockchain) as the parent block of the new
block using a block endorsement policy.

4. Block Proposer proposes the block by diffusing it to Blockchain main-
tainers.

The high-level nominal scenario of Validate block is as follows:

1. Blockchain maintainer validates the block against its local copy of the
blockchain.

2. If the block is valid, Blockchain maintainer either

(a) appends the block to its blockchain if its parent is also in the
blockchain

(b) or (if it is an orphan) stores the block in its memory pool.

3. Blockchain maintainer diffuses the block by sending it to the neigh-
boring Blockchain maintainers.

Interest Group: Pool

This group is responsible for bringing together investors and investees on a blockchain
system. It is composed of two roles: Investor and Investee. Figure 3.6 represents the
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<<Group>>
Pool

Invest

Withdraw 
investment

<<Role>>
Investor

<<Role>>
Investee

Specify an 
investment

«includes»

Redistribute 
reward

FIGURE 3.6: The organizational structure and behavior of the Pool
group.

organizational structure of this group by visualizing and relating roles and behav-
iors. There are three high-level meaningful behaviors: Invest, Withdraw and Redis-
tribute.

The high-level main success scenario of Invest is as follows:

1. Investor specifies an investment (i.e., an investee and an amount of
investment) based on its incentives.

2. Investor makes its investment.

3. Investor regularly receives the redistributed rewards.

4. At any time, Investor can decide to withdraw either a part of or all
of its investment.

Withdraw sends the withdrawal request to the Investee, this request might be a
transaction or an asynchronous message.

The Redistribute behavior sends transactions to the relevant investors rewarding
them proportionally to their contribution.

Interest Group: Decentralized Application (DApp)

This group is responsible for any kind of user-defined transactional decentralized ap-
plication (DApp) realized on the blockchain system. It is composed of user-defined
roles, where at least one role should be Contractor.

In a Decentralized Application group, at least one role should be Contractor. A
DApp may or may not interact with one or more Oracle.

3.3.3 Management of the Groups

As we will see in the Section 3.4, depending on the considered blockchain system,
the membership of the different groups can be managed in two main ways:

• (1) explicit groups where the agents need to satisfy some explicitly well-defined
criteria to enter, and

• (2) implicit groups where agents can enter without any check.
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<<Group>>
A Decentralised Application

DApp 
Behavior 4

<<Role>>
User-defined

Role

<<Role>>
Contractor

DApp 
Behavior 1

«includes»

DApp
Behavior 3

«includes»

<<Role>>
Oracle

DApp 
Behavoir 2

FIGURE 3.7: The organizational structure and behavior of a user-
defined Decentralized Application (DApp) group.

Explicit groups may be in two forms: either they have (1) an agent playing the
Group Manager role (see Figure 3.8) who is responsible for checking the conformity
of agents to the specification of the structure and roles of the group and, authorizes
or denies them to enter into the group (Ferber et al., 2004), or (2) the specification
of the structure and roles of the group are immutably defined on the blockchain
(i.e., shared securely with everyone) and the agents can infer whether they can enter
into the group or not. Implicit groups’ specifications are not explicitly defined, and
consequently agents form such groups in an emergent manner. In other words, the
specifications of those groups are implicitly implemented inside each agent, conse-
quently anyone can join or leave in the way they see fit.

<<Role>>
Group Manager

FIGURE 3.8: The Group Manager role.

The agents are aware of the explicit groups (see Section 3.3.2). This means that
the agents are aware of the other members in these groups and thus can cooperate
directly with each other. This also means that, there are clear specifications about how
to behave, join and/or leave these groups (i.e., the agents can reason about these
groups). However, it is not the case for implicit groups. In these groups, the agents
are not necessarily aware of the other members and thus can by default only cooperate
indirectly with each other.

3.3.4 Roles in Detail

Using the linguistic analysis technique7 (Abbott, 1983) on the group descriptions,
in this section we elaborate the role types by identifying their attributes and behav-
ioral primitives for blockchain systems (Figure 3.9). Here, it should be noted that,
there can be several underlying possible strategies associated with each behavioral
primitive.

7In this technique, the nouns, and noun phrases in textual descriptions of a domain are identified
and considered as candidate conceptual classes and/or attributes.
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FIGURE 3.9: The roles and their corresponding attributes and behav-
iors for blockchain systems.

Transaction Proposer. When an agent aims to transfer a message, whether it
is a financial amount, a new smart contract or simply data, it uses createTransac-
tion(Payload, Receiver) to create a transaction by carefully choosing the payload, out-
put, and a fee, and then broadcast it using propose(Transaction). Typically, a simple
transaction references previous transaction outputs as new transaction inputs and
dedicates all input values to new outputs. Validating the correctness of these inputs
and outputs against the blockchain falls into the responsibilities of the agent before
diffusing its transaction.

Transaction Endorser. When an agent receives a transaction proposal, that is a
transaction not already validated, it uses endorse(Transaction) in order to vouch for
the transaction.

Blockchain Maintainer. When an agent aims to maintain a blockchain, upon re-
ceiving a block, it is responsible for carefully validating it, as well as the embedded
transactions, using validate(Block) and validate(Transaction) respectively. Valid trans-
actions are stored in the memory pool of the agent using store(Transaction).

Here, there is no uncertainty since everything is crystal clear in both the blockchain
and the memory pool. If there is some information missing, the agent simply waits
for their arrival.

Upon validation, blocks are appended to the local blockchain using append(Block).
Valid blocks and transactions are diffused to the network to propagate the informa-
tion using diffuse(Block) and diffuse(Transaction) respectively8.

When an agent receives a transaction concerning a smart contract execution, it
uses its execute(Transaction) behavior. Through the getUnconfirmedTransactions() other
roles can request the pending transactions that are store in the Blockchain Main-
tainer’s memory pool.

Block Proposer. When an agent aims to create blocks, it has three consecutive
behaviors. The agent first uses selectTransactions() to carefully choose, from its mem-
ory pool, a set of unconfirmed transactions which is sufficient to fill a block while
maximizing the total transaction fee. The agent then starts createBlock(Block, Transac-
tion[]) for creating a new block h + 1 which is linked to the last known head block h

8Note that the diffuse behaviors are available to every role and therefore not explicitly shown in
our model.
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in the main chain using a dedicated consensus algorithm. Upon successful creation,
the agent uses propose(Block) to immediately broadcast it to the blockchain network.

Block Endorser. When an agent receives one or several block proposals for the
same blockchain height, it uses endorse(Block) to choose one of them.

Investor. When an agent aims to increase its reward from the creation of blocks
or invest in any entity / service of its choice, it uses specifyInvestment() to define
the amount and target of the investment. The actual investment is done through
the invest(Amount, Investee) behavior to carefully make an investment by taking into
account its budget and the estimated return of its investment. If an investor wants to
get part or all of its investment back, it can do so by using withdraw(Amount, Investee).

Investee. An agent who is invested in by others uses redistribute(Amount, In-
vestor) for carefully redistributing the obtained rewards to its investors on time.

Contractor. An agent implementing contractual behaviors will make use of its
potentially many contractBehavior() to implement and provide a given functionality
on the blockchain.

Oracle. An agent bridging the blockchain system with external systems (i.e.,
Web services, other blockchain, etc. . . ) will expose possibly many oracleBehavior() to
provide the necessary communication medium so that other agents may exchange
information with outside sources.

3.3.5 Interactions

Interactions are the means by which different roles exchange information or re-
sources. The way roles interact in a system (i.e., the way the interactions are realized)
may have significant consequences on their behaviors. In the following, we identify
and describe the possible interaction types found in blockchain systems in terms of
messaging where a sending actor/object sends a message to a receiver actor/object
and relies on that actor and its supporting infrastructure to then select and run some
appropriate behavior.

FIGURE 3.10: The interactions type for blockchain systems

• Synchronous messaging occurs between roles that are communicating through
the same blockchain network (Figure 3.10a). Messages are delivered to the re-
ceiver and the sender’s process is blocked till the receiver’s process completes.

• Asynchronous messaging occurs between roles that communicate through the
same blockchain network (Figure 3.10b). The message is sent to a queue where
it is stored until the receiving role requests and then processes it. Meanwhile,
the sender’s process is not blocked.

• Tamper-resistant messaging relies on a blackboard communication scheme,
using the replicated blockchain as a persistent medium (Figure 3.10c). It is a
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kind of asynchronous messaging in which the sender publishes its message in
the tamper-resistant replicated blockchain.

The generic interaction protocols given in Section 3.3.2 can be implemented in
a concrete blockchain system by using the interaction formats given in this sec-
tion. Different concrete realizations can use different interaction types depending
on which agent plays which role.

3.3.6 Agent Types

We identified the following different types of agents that may exist in blockchain
systems based on the agent definition given in Section 3.2.2: Node and Smart Contract
(Figure 3.11).

Node agents are peers in the blockchain network that are deployed on a com-
puter as a stand-alone software. They can communicate with node agents using
synchronous, asynchronous and/or tamper-resistant messaging. However, they can only
communicate with smart contract agents using synchronous or tamper-resistant mes-
saging (Figure 3.11). Node agents take on responsibility such as maintenance, secu-
rity, and dynamics of the blockchain system through the main generic roles : Trans-
action Proposer, Transaction Endorser, Block Proposer, Block Endorser, Blockchain
Maintainer, Investee, Investor and Oracle. They ensure that the system is up and
running and actively contribute to its main functions.

<<Agent>>
Node

<<Agent>>
Smart Contract

synchronous / tamper-resistant

synchronoussynchronous / asynchronous / tamper-resistant

FIGURE 3.11: The agents for blockchain systems and their interaction
models.

Smart Contract agents are immutable programs that are deployed on a blockchain
data structure. Smart contract agents are not aware of their environment and are not
able to observe it directly. Their communication scheme is more restricted as they
can only communicate reactively through Synchronous or Tamper-resistant messaging
with other agents.

They can only have reactive behaviors that are triggered by other agents. Smart
Contract agents only play Contractor, Group Manager and Investee roles. Through the
Contractor role, they can add functionalities to the blockchain system.

3.4 Case Studies

In this section, based on the roles and their corresponding nominal behaviors given
in Section 3.3, we present how our generic model is able to represent the four dif-
ferent key blockchain technologies to date (i.e., Bitcoin, Ethereum, Tendermint and
Hyperledger Fabric). For each case study, we first give a specification of the system
and then its organizational model. An example simulation implementation for the
Bitcoin and Tendermint case studies is done using the MaDKit multi-agent platform9

(Ferber et al., 2004) and is also available publicly10.

9MaDKit, https://www.madkit.net, last access 13/09/2021.
10AGR4BS, https://gite.lirmm.fr/fmichel/agr4bs, last access 01/09/2021.

https://www.madkit.net
https://gite.lirmm.fr/fmichel/agr4bs
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3.4.1 Bitcoin

Bitcoin has been created in 2008 as a peer to peer electronic cash system (Nakamoto,
2008), in other words it is a store of value or “digital gold”. Bitcoin is an open and
permissionless Proof-of-Work (PoW) based blockchain system. Bitcoin is revolu-
tionary since it is the first blockchain system used globally. It provides a scripting
language that allows its users to define scripts that are executing when some pre-
defined conditions are met (Tschorsch and Scheuermann, 2016). However, this lan-
guage lacks expressivity for hosting decentralized applications or complex services.

System Overview

There are mainly four types of entities in a Bitcoin blockchain system: users, miners,
mining hardware and mining pools.

A user creates transactions with a set of input and output, as well as a fee to in-
centivize miners to process it. Then, it signs the transaction by itself (to endorse that
the transaction is well-formed) and proposes the signed transaction to the blockchain
system by relaying to its neighbors. When a user receives a proposed transaction
from a neighbor, it first validates it against its local blockchain replica. If that trans-
action is valid, the user then adds it to the transactions memory pool and relays it to
its own neighbors.

Miners are in charge of confirming the transactions proposed by users by orga-
nizing them as blocks. In return, they collect a static block reward and the totality
of the fees of the selected transactions. For creating a new block, a miner first needs
to select a head block as the valid head block to append its new one (i.e., adding its
hash inside its new block). This means choosing the head block of the longest chain
or randomly among those of equal length (i.e., the longest chain rule). Then it selects
a set of unconfirmed transactions from its memory pool. Then the miner tries to
solve a very hard cryptographic puzzle (only in a brute force manner) with a given
difficulty using a dedicated mining hardware. This process, which is called PoW11,
requires spending a significant amount of energy and computational power to gen-
erate a desired hash value for the block. Upon success, the miner signs its block and
finally proposes it to the whole blockchain system. Each participant receiving the
proposed block, validates the block, appends it to the local blockchain and relays to
its neighbors.

Mining hardware are dedicated hardware for hashing, mostly Application-Specific
Integrated Circuits (ASICs) as of today. Miners must carefully weigh the costs of in-
vesting in mining hardware. A simple solution is comparing the purchase price and
operating expenses (power, maintenance, rent, and so on), converted into BTCs, to
the net mining returns in BTCs at the end of the machine’s life (Taylor, 2017).

Another investment a miner can do to increase its chance of earning rewards is
to join a mining pool. In a mining pool, miners mutualize their computing power to
reduce the reward variance at a very small cost called the mining pool fee. There are
basically two types of mining pools: centralized and decentralized. In the central-
ized setting, a mining pool leader distributes cryptographic workload among the
pool members and collects the resulting block. The leader then shares the reward

11The PoW serves several purposes: (1) it protects the network against sybil attacks where a ma-
licious participant creates many identities in order to influence the consensus mechanism. (2) it
provides an election mechanism where the first miner solving the PoW is the de facto leader for the
current height, and (3) it controls the growth rate of the blockchain by carefully setting the puzzle com-
plexity to minimize the frequency of forks that are harmful for the blockchain. Every 2016 blocks, the
difficulty is recomputed to match a target of approximately 10 minutes of mining required per block.
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according to the distribution protocol of the pool (Romiti et al., 2019). In the decen-
tralized setting, a smart contract of another blockchain system is used to regulate the
redistribution of block rewards (due to the fact that Bitcoin currently does not sup-
port smart contracts). For example, in the P2POOL12 mining pool, a side blockchain
system is used for every contribution of its participants, and in SmartPool (Luu et al.,
2017) an Ethereum smart contract is used to regulate the pool rewarding mechanism.

Organizational Model
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FIGURE 3.12: An organizational model of Bitcoin-like systems.

Using the AGR4BS model (Section 3.3), Bitcoin-like systems can be modeled as
follows (Figure 3.12). We model users as Node agents (i.e., BTC User) playing the
roles Transaction Proposer, Blockchain Maintainer and Transaction Endorser, the latter
one being a dummy transaction endorsement always returning true since the agent
is signing its own transaction. Lightweight users (i.e., BTC Light User), on the other
hand, do not need to maintain a local blockchain and thus are modeled as Node
agents playing the roles Transaction Proposer and Transaction Endorser. Miners are
modeled as agents (i.e., BTC Miner) playing the roles Blockchain Maintainer, Block
Proposer and Block Endorser where Block Endorser uses the longest chain rule as a
block endorsement policy. However, there is no explicitly defined Block Manage-
ment group that miners belong to. Additionally, miners can also play both Investor
and Investee roles to invest on themselves to increase their chance to succeed in cre-
ating and proposing blocks. Finally, we model mining pools as Block Management
groups where miners collaboratively try to propose blocks and also as Pool groups
where miners are Investors and leaders are Investees.

12P2POOL, http://p2pool.in/, last accessed on 05/03/2021.

http://p2pool.in/
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(A) Sequence diagram of a Bit-
coin transaction proposal

(B) Sequence diagram of a Bit-
coin block proposal

FIGURE 3.13

Figure 3.13a and Figure 3.13b illustrate concrete realizations of the propose trans-
action and the propose block behaviors respectively by showing the interactions be-
tween roles as sequence diagrams. The propose transaction behavior involves play-
ing Transaction Proposer, Transaction Endorser and Blockchain Maintainer as defined
in Section 3.3.2. In Bitcoin, these roles are played by the BTC User and BTC Light
User agents, so that all interactions for proposing a transaction take place inside
the proposing agent. The propose block behavior involves playing Block Proposer,
Blockchain Maintainer and Block Endorser as defined in Section 3.3.2. In Bitcoin, all
these roles are played by the BTC Miner agents, and consequently all interactions for
proposing a block take place inside the proposing agent.

A global representation of our Bitcoin model using the cheeseboard representa-
tion is shown on Figure 3.14.
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FIGURE 3.14: Cheeseboard diagram for an organizational view of a
Bitcoin system

3.4.2 Ethereum 2.0

This subsection is a revised version of the original one published in (Roussille et al.,
2022) to account for the current, stable design of the Ethereum 2.0 protocol.

Ethereum (Buterin, 2014; Wood, 2014), created in 2015, pioneered the use of
smart contracts (Szabo, 1997) and decentralized applications powered by a turing
complete smart contract programming language called Solidity. Ethereum is orig-
inally designed as a PoW based blockchain similar to Bitcoin. However, since this
initial design suffers from severe scaling issues shared by most PoW blockchains,
currently there is a transition to a new version (i.e., Ethereum 2.013) where Proof-of-
Stake (PoS) is used. In this study, we focus on Ethereum 2.0, which is simply referred
to as Ethereum hereafter14.

System Overview

There are mainly four types of entities in an Ethereum blockchain system: users,
validators, staking pools and delegators.

Ethereum users are very similar to those of Bitcoin (see Section 3.4.1). They cre-
ate, sign and propose transactions, validate the diffused data, and maintain their
local blockchains. The key difference is that Ethereum users can invoke smart con-
tracts.

Validators are active participants of the consensus mechanism who have staked
(i.e., locked) enough amount of coins 15 in a deposit smart contract. Periodically16,
a validators is chosen with an election frequency proportional to their staked coins
(i.e., Proof-of-Stake), and is allowed to produce a new block. To do so, it selects a
set of unconfirmed transactions, gathers them in a block, and proposes that block to
the committee formed by all validators through a two step BFT consensus protocol
known as Gasper (Buterin et al., 2020).

13Eth2, https://ethereum.org/en/eth2/, last access on 04/06/2021.
14However, it should be noted that the actual Ethereum 2.0 is still partly undefined. Therefore, our

view of the specifications might be subject to change.
15By the time of writing this thesis, it is 32 ETH.
16At roughly every 12 seconds.

https://ethereum.org/en/eth2/
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The other members of the committee vote in favor or against the block pro-
posal of the leader. If a consensus is reached, that block is to be appended to the
local blockchains of all participants. The proposer of the accepted block is rewarded
through the block reward as well as the transaction fees.

Participants who do not have enough coins to be validators can mutualize their
stakes by delegating them in staking pools. If the delegated stakes cross the required
threshold, the manager of the staking pool can act as a validator and thus can par-
ticipate in the block creation process. Like in Bitcoin (see Section 3.4.1), there are
basically two types of staking pools: centralized and decentralized.

In a centralized staking pool, the participants send their investments to a partic-
ipant (i.e., an exchange) that will stake it on the main blockchain (i.e., beacon chain)
to become a validator. In contrast, in a decentralized staking pool, the participants
send their investments to the staking pool smart contract. This smart contract will
then make those stakes available to node agents that are willing to contribute.
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FIGURE 3.15: An organizational model of Ethereum 2.0 blockchain
system.

Figure 3.15 presents the organizational structure of Ethereum. We model users
similarly to Bitcoin users as node agents (i.e., ETH User) playing the roles Transaction
Proposer, Blockchain Maintainer and Transaction Endorser. Lightweight users (i.e., ETH
Light User), on the other hand, do not need to maintain a local blockchain and thus
are modeled as Node agents playing the roles Transaction Proposer and Transaction En-
dorser. Validators are modeled as Node agents (i.e., ETH Validator) playing the roles
Blockchain Maintainer, Block Proposer and Block Endorser where Block Endorser uses the
2 f
3 rule17 as a block endorsement policy. Additionally, validators can also play both

Investor and Investee roles to increase their chance to enter into the committee. We
model committees as Block Management groups (i.e., ETH Committee). Besides, we
model delegators as Node agents (i.e., ETH Delegator) playing Blockchain Maintainer
and Investor, and that belongs to a staking pool (i.e. ETH Staking Pool) modeled as a
Pool group.

17A 2 f
3 majority of committee members must endorse (i.e., vote for) the proposed block so that it is

considered endorsed and may be broadcast to the rest of the network.
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Figure 3.16 illustrates the concrete realization of invest, redistribute and withdraw
behaviors by showing the interactions between roles as a sequence diagram. These
behaviors involve playing Investor, Investee and User defined roles as defined in Sec-
tion 3.3.2. In Ethereum, these roles are played by ETH Delegator and ETH Staking
Pool Contract agents.

FIGURE 3.16: Sequence diagram of invest, redistribute and withdraw
behaviors (Figure 3.6) for an Ethereum staking pool.

A global representation of our Ethereum model using the cheeseboard represen-
tation is shown on Figure 3.17.

FIGURE 3.17: Cheeseboard diagram for an organizational view of an
Ethereum 2.0 system.

3.4.3 Tendermint / Cosmos

Tendermint (Kwon, 2014) is an open Delegated Proof-of-Stake (DPoS) based blockchain
protocol on which the Cosmos-like blockchain systems (Kwon and Buchman, 2016)
are based on. Tendermint currently is a general purpose blockchain able to host
any type of application through smart contracts written in a variety of supported
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programming languages, the main example of such application is the Cosmos Net-
work18 connecting services from many different blockchains in order to create what
is refered to as “the internet of blockchains”.

System Overview

In Tendermint, the consensus mechanism is based on a BFT algorithm where the
committee leader is elected determistically through a round-robin fashion propor-
tionally to its voting power. In fact, the whole Tendermint protocol is entirely deter-
ministic and allows for extensive research. A particularity of Tendermint is the clear
separation of the application layer and the core layer, allowing any programming
language to be used to build decentralized applications.

There are mainly three types of entity in a Tendermint Blockchain System: Users,
Delegators and Validators.

Validators are active participants, purposely staking currency to be part of the
consensus mechanism of Tendermint (i.e., BFT). This consensus algorithm evolves
in epochs, rounds and phases.

At each epoch there are several rounds for block creation where a set of validators
is selected as a committee to produce blocks.

At each round, a committee member is selected as the proposer to propose a
block and then the round evolves in 3 phases: propose, prevote and precommit.

In the propose phase, the proposer selects a set of unconfirmed transactions, bun-
dles them into a block and proposes it to the other committee members. In the
prevote phase, the committee members check the proposal and decide whether to
endorse such proposal or not.

In the last phase (i.e., precommit), if a committee member receives sufficiently
many proposals for the same block, then it can commit to it. Finally, if a commit-
tee member receives sufficiently many votes for the same block, it can decide for
it (append it to its local chain) and be sure that: no other participant will decide
for a different block; and that all the other committee members will decide for the
same block as his. Once a committee member decides for a block, it also diffuses the
decided block outside the committee.

Delegators are passive participants willing to be part of the consensus mecha-
nism, but unable to do so reliably. Therefore, they delegate their stakes to existing
Validators in exchange for a reward proportional to their contribution.

Users in Tendermint follow the same principle as for Ethereum (see Section 3.4.2).
They are not involved in the consensus mechanism in any other way than proposing
transactions. Users create transaction, sign and propose them to the network.

When a new unconfirmed transaction is received by a User, it first needs to vali-
date it. If it is valid, the User will proceed in storing the valid unconfirmed transac-
tion in its memory pool before broadcasting it to its peers.

When a new block is received, Users also validate it with respect to their current
local blockchain. If the new block is considered valid, they will append it to their
local replica before broadcasting the new block to their peers. Similarly to Ethereum,
Tendermint Users can invoke smart contracts.

Organizational Model

Figure 3.18 presents the organizational structure of Tendermint. We model users
similarly to Ethereum users as node agents (i.e., TDM User) part of the Transaction

18https://cosmos.network/ last accessed on 13/09/2021
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FIGURE 3.18: The organizational model of Tendermint-like systems.

Management group and playing the roles Transaction Proposer, Blockchain Maintainer
and Transaction Endorser. Delegators (i.e., TDM Validator) play both Blockchain Main-
tainer and Blockchain Investor. Finally, Validators (i.e., TDM Validator) play the roles
Blockchain Maintainer, Block Proposer and Investee. Committees are also modeled as
Block Management groups (i.e., TDM Committee).

FIGURE 3.19: Sequence diagram of the propose block behavior (Figure
3.5) in Tendermint.

Figure 3.19 illustrates the block proposition process in Tendermint. When a val-
idator playing Block Proposer is elected as committee leader, it may construct a block
proposal by fetching and selecting the pending unconfirmed transactions through
the selectTransactions() behavior. The selected transactions are then bundled into a
block by using the createBlock(Block, Transaction[]) behavior.

The BFT Consensus can now take place between the leader and other commit-
tee members. First, the leader sends its proposal to the committee. Second, each
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committee member as Block Endorser votes or not for the proposal and forwards its
decision to every other member using endorse(Block). Finally, the commit step takes
place where each committee member as a Blockchain Maintainer applies the consen-
sus result to its local blockchain using the append(Block) behavior and then diffuses
it.

A global representation of our Tendermint model using the cheeseboard repre-
sentation is shown on Figure 3.20.

FIGURE 3.20: Cheeseboard diagram for an organizational view of a
Tendermint system

3.4.4 Hyperledger Fabric

Hyperledger Fabric (Androulaki et al., 2018) is a permissioned blockchain system
intended to hold applications for industrial ecosystems wherein participants trust
and know each other. Given the trusted nature of the participants’ interactions, Hy-
perledger Fabric uses a PBFT consensus realized by a trusted set of entities, therefore
sacrificing decentralization for throughput.

System Overview

A Hyperledger Fabric system is basically composed of channels, organizations and
ordering services.

Channels are the main communication mechanisms by which participants can
communicate. Each channel is dedicated to maintaining a single independent ledger
(i.e., blockchain). Every transaction and block are diffused through the channel,
given that the issuer is identified and authorized by one of the organizations op-
erating on that channel.

A Hyperledger Fabric organization is an abstract entity, usually representing a
real-world organization such as a company. An organization is composed of a Mem-
bership Service Provider (MSP), applications, peers and orderers.

A MSP defines the rights of members to act on a given channel and perform
specific actions through a set of cryptographic signatures and certificates, therefore
possibly aliasing the notion of identity with roles.

Peers store and maintain copies of blockchain(s) and chaincodes (i.e., smart con-
tracts). Peers also endorse newly created transactions according to an endorsement
policy to allow them to move toward an inclusion in the blockchain. To do so, peers



50 Chapter 3. AGR4BS: Agent, Group, Roles for Blockchain Systems

simulate the execution of proposed transactions, sign them and return them back to
the applications.

Applications19 are entities that interact with peers to access a blockchain and
smart contracts (i.e., chaincode). Applications and smart contracts together form a
decentralized application. When an application wants to interact with a smart con-
tract, it creates a dedicated transaction and then asks the peers to endorse this trans-
action. Upon endorsement, the applications diffuses its transaction to the ordering
service (i.e., orderers of the corresponding channel).

Orderers are responsible for ordering the endorsed unconfirmed transactions
and putting them into a block. All orderers operating on the same channel, regard-
less of being member of different organizations, form the ordering service for that
channel. The orderers (i.e., ordering service) rely on deterministic consensus algo-
rithms where the proposed block is guaranteed to be final and correct (e.g., BFT
or single trusted authority). However, they do not use a predefined consensus al-
gorithm and thus the block creation process can be different from one system to
another.
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FIGURE 3.21: An organizational model of Hyperledger-like systems.

Figure 3.21 presents the organizational structure of Hyperledger Fabric. We model
Hyperledger Fabric (HF) Organizations as Transaction Management groups and HF
Ordering Services as Block Management ones. Membership Service Providers (MSP)
are modeled as Node agents playing the Group Manager role. Applications are Node
agents playing only the Transaction Proposer role. Peers, on the other hand, are Node
agents playing both Blockchain Maintainer and Transaction Endorser. Orderers are
Node agents playing Block Proposer and Block Endorser roles. Chaincodes are Smart
Contract agents that can play Contractor role. Even though, it is not modeled ex-
plicitly in Hyperledger Fabric, applications and chaincodes together belong to user
defined DApp groups.

19In Hyperledger Fabric documentation, application, client and user are used interchangeably but
since in the architectural model the concept is called application we use it as they defined.
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FIGURE 3.22: Sequence diagram of the propose transaction behavior
(Figure 3.4) in Hyperledger Fabric.

Figure 3.22 illustrates the concrete realization of propose transaction by showing
the interactions between roles as a sequence diagram. The propose transaction behav-
ior involves playing Transaction Proposer, Transaction Endorser, Blockchain Maintainer
and Contractor as defined in Section 3.3.2. In Hyperledger Fabric, these roles are
played by HF Application, HF Peer, HF Orderer and HF Chaincode agents respectively,
and consequently interactions for proposing a transaction take place between sev-
eral agents.

A global representation of our Hyperledger Fabric model using the cheeseboard
representation is shown on Figure 3.23.
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FIGURE 3.23: Cheeseboard diagram for an organizational view of a
Hyperledger Fabric system

3.5 Modeling Attacks

In the previous section, we have shown the effectiveness of the AGR4BS model for
modeling various blockchain systems. In this section, we shed light on some possi-
ble attacks on blockchain systems to illustrate how our model is able to model them
at both the agent and organizational levels.

The growing interest for blockchain and cryptocurrencies incentivizes the explo-
ration and exploitation of attacks that may target different parts of the system. For
instance, some attacks target the network or the system itself (Apostolaki et al., 2017;
Mirkin et al., 2020) either through partitioning, DDOS attacks or wormhole attacks.

Other attacks, such as the 51% attack, aim at acquiring an overwhelming share
of the production capacities in the system (e.g., computational power in a PoW
blockchain or stakes in a PoS blockchain). With such power, an attacker or group
of attackers can rewrite the blockchain as they wish, perform double spending at-
tacks or censor any entity of their choice. Several elaborated ways to achieve such
goal are explored in (Eyal and Sirer, 2014; Sapirshtein et al., 2016), where the at-
tacker builds an adversarial chain and makes use of the bitcoin fork rule to waste a
significant part of the honest participant’s computational power.

Some attacks, such as (Nayak et al., 2016), combine both attack vectors into one,
building an adversarial chain with the help of unknowing participants that were
previously isolated from the network through an eclipse attack.

Different attack vectors also exist through smart contracts / DApp bug exploita-
tion. The most well-known example is the DAO attack20 which led to the thief of 3.6
millions Ethereum tokens.

Most DApp are susceptible to front-running attack (Eskandari et al., 2020a) where
the attacker makes an unfair use of information related to events that were not yet

20https://blog.b9lab.com/the-dao-hack-in-eight-minutes-94919018692d last accessed on
06/07/2021
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written on the blockchain (i.e., pending transactions in a blockchain are essentially
insight on future events). This list of attack vector is by no means exhaustive and
only aims at covering the main events and concerns about current blockchain sys-
tems, highlighting the fact that blockchain systems are vulnerable.

The next figures, associated with some examples of attack, are purposely simpli-
fied and do not show every role to emphasize the organizational impact of such an
attack.

In the following subsections, we will show briefly how AGR4BS can also be used
for modeling three of the aforementioned attacks on blockchain systems.

3.5.1 Front Running

<<Group>>
Front Running Attack

Propose Front 
Transaction

<<Role>>
Attacker

<<Role>>
Blockchain 
Maintainer

Monitor
Memory Pool

«includes»

<<Role>>
Transaction 

Proposer

«extends»

Propose 
Transaction

«extends»

FIGURE 3.24: The organizational structure of a transaction based
front-running attack.

In this attack, the attacker continuously monitors the pending transactions and
takes advantage of the transaction selection / block creation process to front run an-
other transaction in a profitable manner. For instance, on a decentralized exchange
the attacker might see that a user intents to buy a massive amount of a given asset,
and therefore expect for the price to increase significantly.

In such a situation, the attacker might try to front run that transaction to buy
some of the asset before the honest user and profit from the attack. The attacker
can do so either by issuing a transaction with a large fee, thus ensuring that block
creators will select it or by being a block creator itself.

This attack does not make use of any bug nor deviates from the protocol in any
way. It is only possible due to the fact that the blockchain makes future events and
intents known to every participant beforehand.

We model this attack with an attacker role deviating from Transaction Proposer as
showed in Figure 3.24. The attacker rely on the Blockchain Manager role to get current
information about pending transactions through the Monitor Memory Pool behavior.
When a profitable front-running scenario is found in the memory pool, the attacker
creates a front-running transaction and proposes it to the network using the deviant
Propose Front Transaction behavior.
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3.5.2 Eclipse Attack
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FIGURE 3.25: The organizational structure of an eclipse attack.

FIGURE 3.26: The cheeseboard transition diagram of an eclipse attack

In this attack (Apostolaki et al., 2017), the attacker interposes itself between its vic-
tim(s) and the rest of the system by partitioning the network. The attacker then
controls what the victim(s) are sending and receiving.

An attacker might infect a network router or an agent directly to control both the
incoming and outgoing traffic. Victim agents are not aware that they are infected and
may receive different blocks and transactions than the rest of the system depending
on what the attacker wishes to communicate.

The impact of such an attack could range from increased propagation delay to
the creation of adversarial chains, possibly leading to double spending attempts.
For example, in the case of the creation of an adversarial chain in a PoW blockchain,
the victims might be mining on an adversarial chain built by the attacker without
any way of knowing it, therefore contributing to the malicious intent of the attacker
while behaving correctly according to the protocol as described in (Nayak et al.,
2016).
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The eclipse attack can be modeled using our generic model as shown in Figure
3.25. We also show its organizational impact on the system on Figure 3.26. The
victim’s view of the blockchain system is controlled by a deviation of the Blockchain
Maintainer role from the attacker, which filters and diffuses only the data that it
wishes its victims to see. Similarly, any data received from victim agents will be
filtered before being held or relayed to the whole blockchain system.

We model agents which are isolated as agents having the Victim role, meaning
that even though they believe to be connected to the whole blockchain system, they
are only connected to the attacker or possibly other victims. The Victim role does
not involve any behavioral deviation.

3.5.3 Wormhole Attack
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FIGURE 3.27: The organizational structure of a wormhole attack

In the wormhole attack, two or more attackers located at different points in the
network establish an overlay network to transfer information faster than on the main
P2P network. They do so through alteration / addition to the Propose Transaction and
Propose Block roles and their related behaviors.

So, this attack aims at getting an unfair advantage over other participants, relying
solely on the longer propagation time of the P2P network. Furthermore, the attackers
may also choose to relay only relevant information according to their criteria, such
as highly valuable transactions or new block proposal.

As shown in Figures 3.27 and 3.28 we model this attack through an Attacker
role overloading the generic diffuse behavior. Every data received will be handled
by the Filter Data behavior to assess of its relevance for the attackers before being
transmitted through the wormhole using Diffuse Data through Wormhole.

Figure 3.28 shows how the attackers can create such wormhole to overcome a
bad network topology. At any point in time, an attacker might choose to include
a new agent to the group. The attackers can do so since they all extend the Group
Manager role and can therefore expand their attack if it is deemed necessary and
profitable.

3.6 Discussion

In this section, we first discuss the expressivity of AGR4BS followed by key dif-
ferences between the blockchain systems that we modeled in Section 3.4 (Section
3.6.1). From those differences we discuss the robustness and the vulnerabilities of
blockchain systems (Section 3.6.2). We then discuss the robustness and resilience of
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FIGURE 3.28: The cheeseboard transition diagram of a wormhole at-
tack.

blockchain systems (Section 3.6.3). Finally, we conclude this section with a discus-
sion about reliability (Section 3.6.4).

3.6.1 Expressivity of AGR4BS

As stated in Section 3.1, several frameworks are able to partially represent blockchain
systems. AGR4BS is compatible with the core characteristics of blockchain systems.

The distributed characteristic is expressed through many agents present in the
system which are required to execute a specific algorithm for both the blockchain
and their individual incentives. The social characteristic of blockchain systems are
easily represented through both inter- and intra-organization interactions. Each con-
tributing agent is also economically incentivized through the blockchain reward sys-
tem, which encompasses the economical nature of that environment. Finally, or-
ganizational modeling provides modularity, thus allowing rapid development and
adaptation of AGR4BS to new blockchain designs. According to this, the case stud-
ies given in Section 3.4 show that AGR4BS provides useful abstractions for defining
different types of existing blockchain systems.

Consequently, AGR4BS can also be used to construct dedicated modular soft-
ware models (e.g., prototypes, simulation models and so on) allowing us to bench-
mark and compare different types of blockchains based on common features through
a generic approach, with high component re-usability.

3.6.2 Organizational Differences of Blockchain Systems

In this subsection, we discuss the organizational differences of blockchain systems
based on the used abstractions, i.e., group, agent and role.
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Groups
Systems

BTC ETH TDM HF

Structural
Transaction Management Implicit Implicit Implicit Explicit

Block Management Implicit Explicit Explicit Explicit

Interest
Overlay Explicit Explicit Explicit N/A

Pool Explicit Explicit N/A N/A
DApp N/A Explicit Explicit Explicit

TABLE 3.1: Group differences of blockchain systems

Group Differences

In Bitcoin (Section 3.4.1), both structural groups (i.e., Transaction Management and
Block Management) are implicit groups. The interest groups Overlay Network and
Pool, on the other hand, are explicit groups.

In Ethereum (Section 3.4.2), while the transaction management group is implicit,
the block management is explicit. The interest groups Pool and Decentralized Appli-
cation are explicit.

In Tendermint (Section 3.4.3), the situation is similar to Ethereum.
In Hyperledger Fabric (Section 3.4.4), on the other hand, all groups are explicitly

defined.
Entering into an explicit group is a complex process, since an agent has to be

authorized to enter (see Section 3.3.2). Our study shows that in different explicit
blockchain groups, there are different mechanisms for realizing such authorizations.

In Hyperledger Fabric, the HF Organization groups have an HF MSP agent play-
ing Group Manager which is responsible for authorizing agents.

In Ethereum and Tendermint, on the other hand, the ETH Committee group’s
authorization logic is immutably defined on the blockchain and therefore has no
dedicated entry point. Furthermore, in Ethereum 2.0, structural functionalities, and
therefore structural groups, are managed by smart contract agents. This is a core
difference with other blockchains, as the regulation mechanisms are inherent to the
system, not one enforced by node agents or classical incentives.

As can be seen in Table 3.1, all interest groups are explicit. However, by merely
looking at this, it cannot be concluded that all interest groups are explicit. In fact, it is
quite possible for an interest group to be implicit (e.g., an attack group).

Finally, note that different agents might have different (and possibly wrong)
views of the same group. For instance, in the case of an Eclipse Attack (Section
3.5.2), even though the attacker is creating an Interest Group, the victims still see it as
the genuine Block Management Group.

Agent Differences

Case studies also show that agents and roles are orchestrated in a different way in
different blockchain systems (see Figures 3.14, 3.17, 3.20, 3.23). Consider, for in-
stance, the endorse transaction behavior involving the Transaction Proposer and
Transaction Endorser roles (Figure 3.4). While this behavior is implicitly realized
by the same agent in Bitcoin (Figure 3.13a), it is explicitly realized by several agents
in Hyperledger Fabric (Figure 3.22).

As another instance, one can focus on the endorse block behavior involving the
Block Proposer and the Block Endorser roles (Figure 3.4). While this behavior is
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implicitly realized by the same agent in Bitcoin (Figure 3.13b), it is explicitly realized
by several agents in Tendermint (Figure 3.19).

Role Differences

Overall, not all generic role types are used and/or realized in every blockchain.
While Bitcoin (Figure 3.14), Ethereum (Figure 3.17) and Tendermint (Figure 3.20) use
all of them, the Investor and Investee roles are clearly irrelevant in Hyperledger Fab-
ric (Figure 3.23). In contrast, Hyperledger Fabric requires a specific implementation
of endorsement mechanisms for transactions, while in both Bitcoin and Ethereum, it
serves no real purpose as endorsements are always realized implicitly.

3.6.3 Robustness and Resilience

Overall, looking at the blockchain systems discussed, it can be said that the very
essential group for a blockchain system is transaction management, since nearly all
agents play a role in it. Consequently, vulnerabilities in a transaction management
group can affect the whole blockchain system. However, except for Hyperledger
Fabric, this group is always implicitly defined.

As shown concretely by the case studies, AGR4BS allows us to see clearly the
similarities and differences between agents as well as blockchain systems. By iden-
tifying the deviations of high-level behaviors of agents, it is thus possible to identify
cross-cutting potential high-level vulnerabilities of blockchain systems. The solu-
tions found for these high-level vulnerabilities might later be applied for all types of
blockchains.

Regarding the resilience of existing groups, a clear emphasis is put on the block
management group in the existing literature, this for several obvious reasons. The
block management group allows for significant rewards if taken over by malicious
agents. This group is also less reliant on other groups or the ledger than the transac-
tion management one, and therefore a more manageable target.

However, there exist other less generic groups that can allow for even greater
reward, such as DApp and especially DeFI implementations. But compromising
those rely more on bug exploitation than on actual corruption, since they are by
definition replicated over the whole blockchain.

3.6.4 Reliability

In Section 3.3.1, we did not emphasize one core conceptual distinction regarding the
combination of roles and agents. When any given role is played by a Node agent,
that one has the possibility to deviate from its nominal behavior, which echoes to
the trustless paradigm of decentralized systems and more specifically to blockchain
systems.

Still, smart contracts are stored both immutably and transparently in the blockchain
data structure, and are deterministic by design. Therefore, when a functionality is
required in a blockchain system, it should always be implemented through smart
contracts if possible. The reason is that smart contracts bring trust in a trustless sys-
tem through their transparency and immutability, as well as being replicated and
therefore decentralized.

So, while any functionality could technically be implemented in Node agents,
they do have the potential to purposely deviate from the nominal behavior. They are
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also subject to failures and are not replicated by design. Node agents are therefore
unreliable by opposition to smart contracts.

3.7 Conclusion

As of today, the blockchain technology is used as a basis for a wide range of applica-
tions ranging from mere cryptocurrencies to decentralized applications. However,
we face highly competitive and complex cases that have technical problems (e.g.,
data reliability, confidentiality, archiving) which are being constantly reshaped by
user (e.g., performance (# of transactions/minute), fees), technology (e.g., consen-
sus protocol, parameters, cost) and regulatory (e.g., standards, laws, GDPR) require-
ments. Moreover, blockchain applications are intended to be deployed into various
environments such as computers, smartphones, vehicles, drones, IoT devices and so
on. Furthermore, the blockchain ecosystem is very active, dynamic and rich (e.g.,
Bitcoin, Ethereum, Tendermint, Hyperledger, Sycomore). This defines a diverse and
growing ecosystem wherein each blockchain solution relying on common principles
while having their own characteristics.

In this context, several approaches for representing blockchain systems have
been proposed, according to different modeling paradigms, to investigate different
aspects of blockchain systems. In these studies, the designed models are not in-
tended to be generic, since they focus on particular issues. Especially, the modeling
is often done considering only one particular variation of high-level details, such as
the used consensus protocol, or only one particular kind of blockchain (e.g., Bitcoin).

Consequently, there is not a unified way of representing blockchain systems from
which the blockchain community could benefit and capitalize on. So, we argued that
there is a need for a realistic and highly flexible model able to represent a wide range
of existing and future blockchain systems that may have widely different architec-
tures and objectives.

To this end, after having introduced the necessary blockchain concepts (Chap-
ter 2) and existing ways of modeling such systems, we have motivated our choice
for an organizational modeling (Section 3.2) and proposed a generic organizational
model for blockchain systems, namely AGR4BS (Section 3.3), whose main purpose
is to provide a unification of existing blockchain implementations through a single
model.

As far as we know, AGR4BS is the first organizational multi-agent blockchain
model for blockchain systems. More notably, AGR4BS provides the necessary basic
abstractions (allowing consensus on fundamental terms) to dissect existing blockchain
systems and serves as a blueprint for exploring new alternative ones.

Especially, we have shown how we used AGR4BS to model different blockchain
systems such as Bitcoin (Section 3.4.1), Ethereum (Section 3.4.2), Tendermint (Sec-
tion 3.4.3) and Hyperledger Fabric (Section 3.4.4), thus demonstrating the genericity
and adaptability of AGR4BS. Moreover, both the Bitcoin and Tendermint prototype
implementations are available at : https://gite.lirmm.fr/fmichel/agr4bs.

Furthermore, in Section 3.5, we highlighted a few vulnerabilities of blockchain
systems and their organizational consequences. Being able to represent divergent
behavior at both the system and the agent level is mandatory to provide a complete
view of any kind of blockchain system.

Lastly, in Section 3.6.1 we analyzed and discussed on the expressivity of AGR4BS.

https://gite.lirmm.fr/fmichel/agr4bs
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This model serves as groundwork for the remaining of the thesis as it will be the
common denominator of both the role based taxonomy defined in Chapter 4 and our
blockchain simulator covered in Chapter 5.



61

Chapter 4

A role based taxonomy of incentive
vulnerabilities

This chapter provides an in-depth description of our proposed taxonomy for blockchain
incentive vulnerabilities. It is grounded in the AGR4BS model described in Chap-
ter 3 and provides a coherent method to describe and rank vulnerabilities to guide
research efforts and computational power on the more serious vulnerabilities. This
chapter is an extension of a work realized during this Ph.D, aimed at categorizing
blockchain attack vectors in line with the AGR4BS model (Roussille et al., 2023).

4.1 Related Work

A vulnerability can be formally defined as a weakness or flaw within a system that
can be exploited by an external party to cause harm to the system. In this study, we
focus on a specific type of blockchain system vulnerability: incentive vulnerability,
which we define as a misalignment between (1) the behavior of an agent as expected
by the protocol designers and (2) the behavior eventually obtained by following a
utility based interpretation of the incentives.

This misalignment incentivizes participants to deviate from their nominal behav-
ior (i.e., external fault). In that sense, a behavior is said to deviate when not strictly
adhering to the official implementation (i.e., the nominal behavior). If such a devi-
ation harms the system or its participants, one or several countermeasures must be
designed and implemented to mitigate the deviation feasibility and/or its impact.
Strictly speaking, an incentive vulnerability is the root cause of a deviation.

There are exhaustive reviews and surveys reported in the literature: (Alkhalifah
et al., 2020; Hameed et al., 2022; Li et al., 2020; Saad et al., 2020; Sayeed et al., 2020)
(see Table 4.1 for a comparison).

(Saad et al., 2020) define an attack taxonomy over the following three main cate-
gories: Structure attacks, Peer-to-Peer attacks and Application attacks. They list the
known attacks, and discuss the existing or potential countermeasures.

(Hameed et al., 2022) define several taxonomies with a strong focus on industrial
application of blockchain systems. Those taxonomies relate to design, security, pri-
vacy requirements, and security. They expose several attacks on a per-layer basis,
with known or proposed countermeasures.

(Sayeed et al., 2020) propose a study focused on the Ethereum smart contracts /
application layer. They implicitly provide a taxonomy through a categorization of
the main types of attacks and discuss existing tools and techniques enabling some
level of protection.
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(Alkhalifah et al., 2020) define a taxonomy of blockchain threats and vulnera-
bilities over the following categories : Client’s Vulnerabilities, Consensus Mech-
anisms Vulnerabilities, Mining Pool Vulnerabilities, Network Vulnerabilities and
Smart Contract Vulnerabilities (Ethereum and EVM focuses).

(Li et al., 2020) survey the security of blockchain systems and propose a suc-
cinct taxonomy of blockchain risks covering encryption, consensus and transactions.
They also propose a taxonomy of Ethereum’s smart contracts vulnerabilities.

Exhaustive studies focus on the "How" and "Where" of attacks, defining how
it impacts the system as well as in which layer it takes place. In this perspective,
countermeasures are often restrained to only treat the problem’s consequences (i.e.,
detection systems, increased resilience).

Specific attack studies almost only focus on the "Why", explaining the reasons
and incentives motivating the attack. The proposed countermeasures modify the
system so that the attack is no longer incentivized, treating the root cause of the
problem.

Our taxonomy aims to merge both approaches, covering most deviations with a
focus on incentives, and a role-based classification for a natural use with reinforce-
ment learning as shown in Table 4.1.

Caracteristics

References
(Saad et al., 2020) (Hameed et al., 2022) (Sayeed et al., 2020) (Alkhalifah et al., 2020) (Li et al., 2020) Ours

Layer of interest
- Application
- Blockchain
- Network

- Application
- Blockchain
- Network

- Application
- Application
- Blockchain
- Network

- Application
- Blockchain
- Network

- Blockchain

Proposes Countermeasures Yes Yes Yes Yes Yes Yes
Classification Layer Based Layer Based Attack Type Layer Based Risk & Vulnerability Role-Based

Incentives Focused No No No No No Yes

TABLE 4.1: Comparison of studies with a focus on taxonomies con-
cerning the security of blockchains.

4.2 Taxonomy Characteristics

To classify, categorize and measure vulnerabilities, we use the following concepts:
impact family, severity, risk, scale, priority score and system.

Impact Family relates to the expected impact of vulnerability exploitation. Three
possibilities are considered: Fairness, Economics and Security. A Fairness impact
arises whenever discrimination between agents occurs for any reason that is not
part of the protocol. Also, any imbalance between the proportionality of invested
resources and the reward is included in this family. An Economic impact happens
when the system’s economy is disturbed, such as an artificial transaction fee in-
crease. A security impact occurs when a core property of the blockchain is compro-
mised such as not being able to finalize newly created blocks, or a loosing integrity
of the blockchain by including invalid data.

Severity defines the level of impact of a successful attack, and takes a value in
Very High, High, Medium, Low, and Very Low, which are aliases for 1, 4

5 , 3
5

2
5 and 1

5
respectively. These levels are not based on a quantifiable notion of severity but are
used to categorize vulnerabilities informally and thus help compute their respective
priority scores.

’Very Low’ implies that an agent or group of agents is mildly impacted but still
functioning, with no quantifiable impact on groups or the system. ’Low’ also im-
plies that an agent, or a subgroup of agents, is impacted in a more meaningful way,
possibly non-functional, while the group and blockchain system they are part of is
still functional. A ’Medium’ severity level impacts both agents and groups in a way
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not jeopardizing the system, but implying consequences in at least one of its core
properties, such as Fairness, Security or Economics. A ’High’ severity level implies
a non-negligible impact on the system. Finally, ’Very High’ refers to an immediate
threat, such as a general unfairness issue or halting of the system.

Risk refers to the feasibility of an attack in terms of resources required to con-
duct it. The risk levels are similar to the ones defined for severity: ’Very High’,
’High’, ’Medium’, ’Low’, and ’Very Low’. Those risk levels are also mapped to val-
ues similar to severity levels. ’Very High’ signifies that the associated vulnerability
is relatively easy to set up as it only requires a few resources. ’High’ refers to an
attack where some amount of resources must be committed to it, but still doable by
most participants. ’Medium’ means that an attack requires a non-trivial amount of
resources. ‘Low‘ and ‘Very Low‘ are used to describe attacks requiring overwhelm-
ingly large resources.

An important note regarding the definition of risk, and more specifically fea-
sibility: the resource required to achieve a specific attack depends on the attack’s
type. For example, a mining-based attack requires computational power, while a
network-related one requires many identities and bandwidth. Our resource defini-
tion is, therefore, fluid to accommodate various attack types.

Scale. As blockchains are decentralized, one must differentiate the risk and sever-
ity levels over the scale of the actual attack. In the scope of our work, we consider
both a low-scale attack and a large-scale one. Depending on the attack type, the scale
might be related to the number of attackers (i.e., sybil attack), the total required com-
puting power (i.e., mining attack) or the economic value (i.e., staking attack) required
for the attack.

Priority Score ranks the identified vulnerabilities loosely. It is based on severity
and risk and defined as the product of those variables. As we can compute low-scale
and large-scale priority scores, we opt for a pessimistic approach and consider the
attack to have an overall priority score equal to the maximum priority score across
the different scales.

System describes the subset of blockchain systems vulnerable to a specific at-
tack. Some systems may be independent, while others might be linked deeply to
the underlying consensus mechanism: PoW, PoS, PoA, PBFT, Explicit Block and/or
Transaction Endorsement, All.

In the following, we present each role and its deviations. For each role, we sum-
marize all of its known deviations, their impact families, severities and risks in low
and large scales, and their calculated priority scores (summarized in Table 4.2). Each
subsection starts with a nominal behavior definition of a role, followed by possible
deviations.

4.3 Role-based Taxonomy

Here we present the role-based taxonomy of vulnerabilities (see Table 4.2) that pro-
vides a classification of violable constraints and assumptions that are bound to the
roles.

4.3.1 Block Proposer

Nominal behavior. Block Proposer selects a subset of the most relevant transactions,
orders them, and tries to create a valid block, always extending the main chain ac-
cording to the consensus protocol of the system and, if it succeeds, immediately
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Role

Deviations Exploiting Incentive Vulnerabilities Vulnerability Metrics

Deviation Name Deviated Behavior Impacted Roles Reference Impact Family
Low Scale Large Scale Priority

Score
System

Severity Risk Severity Risk

Block

Proposer

Censure of Transaction selectTransactions Transaction Proposer (Gürcan et al., 2017)

Fairness

0.16 All

Selective Block Propagation proposeBlock
Blockchain Maintainer

Block Proposer
N/A 0.24 All

Consensus delay
createBlock

proposeBlock
All N/A 0.80 PBFT

Selfish / Stubborn Block Creation
createBlock

proposeBlock

Blockchain Maintainer

Block Proposer
(Eyal and Sirer, 2014)

Fairness

Security
0.80 PoW & PoS*

Maximal Extractable Value
selectTransaction

createBlock
Transaction Proposer (Daian et al., 2020)

Fairness

Economics
0.32 All

Block

Endorser
Censure of Blocks endorseBlock

Block Proposer

Transaction Proposer
N/A

Fairness
0.16

Explicit

Endorsement

Transaction

Endorser
Censure of Transactions endorseTransaction Transaction Proposer (Piriou et al., 2021) 0.16

Explicit

Endorsement

Transaction

Proposer

Double Spending createTransaction All (Chohan, 2018) Fairness

Economics

0.25 All

Front Running createTransaction Transaction Proposer (Eskandari et al., 2020b) 0.60 All

Blockchain

Maintainer

Skip Transaction Validation validateTransaction None

(Luu et al., 2015) Security

0.40 All

Skip Block Validation validateBlock None 0.40 All

Skip Transaction Execution
validateTransaction

executeTransaction
None 0.40 All

Skip Transaction Diffusion diffuseTransaction Blockchain Maintainer (Ersoy et al., 2018) Fairness 0.64 All

Oracle Corrupted Oracle Dedicated Oracle behavior

Contractor

Investor

Investee

(Caldarelli, 2020) Economics 0.40 All

Investee No / Partial Redistribution redistribute Investor N/A
Fairness

Economics
0.32 All

TABLE 4.2: The taxonomy of role-based incentive vulnerabilities.
Very Low: , Low: , Medium : , High: ,

Very High :

proposes it to its neighbors.
Censure Transaction. Through a deviation of the selectTransactions behavior, a

Block Proposer may censure some transactions and therefore impacts Fairness. This
is the case when a Block Proposer purposely excludes from its selection mechanism
specific transactions coming from Transaction Proposer, even though they are finan-
cially attractive. This is an identity/address-based censure whose purpose is to de-
lay or even forbid transactions involving a specific sender or receiver. While several
blacklisted addresses are already purposely excluded from the network, the same
behavior applied to non-criminal addresses is an illegitimate censure.

For this deviation to be impactful, a majority of block proposer must be willing to
enforce the censure due to the complexity associated with having an overwhelming
majority in blockchain systems. While significantly delayed, the agents or groups
targeted by such censure can still rely on the remaining nominal participants or be-
come a Block Proposer. However, a single block proposer may choose to censure
any other participant; this requires few resources and has little to no impact.

Selective Block Propagation. The block proposal to the network might be intention-
ally skewed through a deviation of the proposeBlock behavior. For example, suppose
an agent wishes to delay a competing Block Proposer and Blockchain Maintainer.
In that case, it might propose its new block to all its peers except that competing
one, thus slightly delaying its competitor’s knowledge update. On a large scale, the
targeted agent(s) may have a significant delay with the rest of the network, thus
lowering their potential for valid block creation.

Consensus Delay. Consensus delay, or halting, is mainly related to PBFT consensus-
inspired blockchain systems, where block proposers either propose conflicting blocks
or do not propose through a combination of deviations from the createBlock and pro-
poseBlock behaviors. A consensus-level attack impacts every participant. In such a
configuration, consensus participants, often called validators, may collude to reach
the 33% threshold of malicious nodes in the committee.

Selfish / Stubborn Block Creation A Block Proposer might not propose a block
linked to the current consensual head of the public main-chain but rather on an
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adversarial fork that is potentially private. This is done with another combination of
deviations from the createBlock and proposeBlock behaviors. Other Blockchain Main-
tainers and Block Proposers are the primary victims of such a deviation.

Such a deviation is mainly linked to Proof-of-Work (PoW) blockchains and has
been studied extensively (Eyal and Sirer, 2014). Recent work on the Ethereum 2.0
consensus mechanism indicates that a similar behavior is possible (Neuder et al.,
2021; Schwarz-Schilling et al., 2021). A similar attack on Ethereum 2.0 will be cov-
ered in depth and subject to an experimentation detailed in Chapter 6.

Maximal Extractable Value Another vulnerability targeting the economics of pub-
lic blockchains is the possibility of reordering transactions for the highest financial
gain1 (Daian et al., 2020). This optimization results from a deviation in selectTransac-
tion and createBlock directly impacting the Transaction Proposers.

While it is rational for a miner to do so, Miner / Maximal Extractable Value
(MEV) takes advantage of front-runners mostly looking for profitable arbitrage op-
portunities. This dynamic eventually raises the blockchain fees and reduces accessi-
bility.

While MEV and front-runners serve Decentralized Finance (DeFi) economic equi-
librium, they hamper the overall economy. They may create blocks with such attrac-
tive rewards that other miners might be incentivized to attempt to create a fork and
capture the reward for themselves. Additionally, the impact on fairness is evident as
the order of transactions is purposely modified.

Maximizing the reward from a block creation is rational individually or in a
group, such as a mining pool. Because of this, the system becomes less accessible
due to higher fees but it is still usable.

4.3.2 Block Endorser

Nominal behavior. Block Endorser vouches for blocks to be included in the chain
following a block endorsement policy.

Censure Block. Block Proposers might purposely refuse to endorse blocks with
specific characteristics by deviating from the endorseBlock nominal behavior, thus di-
rectly impacting the Block Proposer who created the block and, indirectly, the Trans-
action Proposers whose transactions are included in it.

Depending on the endorsement policy, such actions prevent the block from pro-
ceeding into the blockchain for non-consensual reasons and therefore impact the
Fairness of the system. If such agents were to misbehave, they could impact or even
stop the production of blocks.

This censure is relatively easy to set up for an individual agent. However, it has
little to no impact as Block Proposers can and should always submit their proposals
to several endorsers. Conducting this attack at a large scale requires most of the
Block Endorsers to deviate from the nominal behavior, which is unlikely to happen
thanks to the decentralized nature of the system.

4.3.3 Transaction Endorser

Nominal behavior. Transaction Endorser vouches for the inclusion of a transaction
following an endorsement policy.

Censure Transaction. Similarly to the Endorse Block behavior, Endorse Transac-
tion is subject to a malicious deviation from the endorseTransaction behavior, leading

1Quantifying Blockchain Extractable Value: How dark is the forest? - https://arxiv.org/abs/21
01.05511 last accessed on : 10-28-2022

https://arxiv.org/abs/2101.05511
https://arxiv.org/abs/2101.05511
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to censorship of one or several Transactions Proposers. Any endorser could refuse
to endorse specific transactions. Such actions could forbid the transaction to pro-
ceed any further in explicit endorsement schemes, such as in the Hyperledger Fabric
blockchain2.

However, at a larger scale, its impact is more severe as it is possible to lock par-
ticipants out of the system. Still, this requires a majority of endorsers to deviate from
the nominal behavior, thus reducing the risk.

4.3.4 Transaction Proposer

Nominal behavior. Transaction Proposer creates a valid transaction with a payload
and the right fee for its inclusion in a block and then proposes it to the system.

Double Spending. In the context of a blockchain that allows forking in its protocol,
an agent might deviate from the nominal createTransaction behavior for a double-
spending attempt (Chohan, 2018). This deviation is usually paired with a form of
forking attack such as selfish mining by knowingly proposing two conflicting trans-
actions on different candidate chains. Such a deviation, if successful, impacts every
participant of the blockchain system.

Front Running. As transactions are public and broadcast through the network
before their inclusion in a block, every participant is aware of future events before
they occur. For example, this allows a front-runner to take advantage of incom-
ing large buy/sell orders on decentralized exchanges to front-run (Eskandari et al.,
2020b) such transaction through another deviation of the createTransaction behavior,
impacting other Transaction Proposers.

Front-runners can get priority through the fee mechanism, that is the primary
selection criteria of Block Creator when selecting which transactions to include in a
potential new block.

Note that front running is not a deviation. This behavior is rational and allowed
by the protocol, but it is obviously harmful and can be therefore considered as an
incentive vulnerability.

Front running is deeply linked to MEV as any front-runner is theoretically will-
ing to give up to 99.99% of its profit as a fee to the Block Creator, thus increasing its
power and influence in public blockchain Systems.

However, the impacts vary depending on the scale of the attack, i.e., the number
of participants involved in front-running transactions, looking for opportunities.

While a few front-runners may only have a mild impact on the overall system,
when this strategy is widely adopted, there are consequences for the front-run users
and the global economy as it fuels artificial fee growth. Front running is a serious
issue regarding both the Economics and Fairness of blockchain systems.

4.3.5 Blockchain Maintainer

Nominal behavior. Blockchain Maintainer validates all newly received blocks and
transactions. Valid transactions are stored in the memory pool, valid blocks are ap-
pended to the local blockchain, and all its transactions are executed.

Skip Transaction Validation. As transaction validation is not rewarded, rational
agents may be incentivized to skip it by deviating from the validateTransaction be-
havior, potentially sacrificing the overall security and correctness of the system to
gain an advantage in both time and computing resources. Such a deviation has no

2Hyperledger Fabric, https://www.hyperledger.org/use/fabric, accessed on 09/12/2022.

https://www.hyperledger.org/use/fabric
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impact on other participants as long as it is local. However, if it were widespread,
all participants would be impacted as the ledger coherency is no longer ensured.

This vulnerability is known as the Verifier’s Dilemma (Luu et al., 2015). The po-
tential inclusion of invalid data into the blockchain is hazardous as it threatens the
system’s stability. As stated in Chapter 2, participants that maintain the blockchain
are interested in maintaining the system’s stability but also in keeping the unre-
warded amount of work to a minimum.

Skip Transaction Execution. In the nominal case, when an agent receives a transac-
tion linked to a smart contract invocation, it should execute them using this behavior.
The agent might not know in advance if the contract contains faulty logic, such as a
hack of the execution environment to produce a potentially harmful result or simply
invalid actions. The transaction execution time is also unknown and may be costly
for the agent validating it. As smart contracts execution are linked to events and
transactions, the primary vulnerability of this behavior is similar to that of the val-
idate(Transaction), where an agent would skip the execution by deviating from both
the validateTransaction and executeTransaction behaviors.

Skip Block Validation. Validating a block may be costly for a Blockchain Main-
tainer. So, to gain a slight advantage, it may simply skip this step and append/prop-
agate invalid blocks by deviation from the validateBlock behavior. Validating a block
implies validating its structure and the embedded transactions, which eventually
requires executing them.

Skip Transaction Diffusion. When transaction diffusion is not incentivized, rational
agents may be skewed toward selfish behavior. This involves not sharing a new
transaction with its peers by deviating from the diffuseTransaction nominal behavior.
This deviation may even be profitable for Block Creators in open PoW systems as it
reduces competition on the memory pool.

Current blockchain systems do not explicitly reward transaction diffusion. In-
stead, they implicitly rely on the stake that contributors (i.e., Block Proposers and
Blockchain Maintainers) have in the system. No transaction diffusion would ham-
per the system’s usability by its users and possibly lead to centralization. However,
for the reasons mentioned above, such an attack is improbable as it is against the
interest of every rational contributor.

4.3.6 Oracle

Nominal behavior. The Oracle role holds the behavior collection responsible for Oracle
functionalities, that is, bridging outside information to the blockchain.

Corrupted Oracle. An oracle node might be corrupted and transmit erroneous
data on purpose by deviating from one of its dedicated behaviors or simply due
to faulty logic. This would lead the blockchain system to make decisions based on
incorrect information. Additionally, the data source might be corrupted while the
Oracle is working nominally.

Both cases are nearly indistinguishable from one another and can lead to serious
consequences. Trusting external oracle data is known as the Oracle problem. It poses
a paradox between the necessity of oracles for real-world usage of the blockchain
and the trustless nature of blockchain systems as described in (Caldarelli, 2020).
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4.3.7 Investee

Nominal behavior. Investee receives investments from investors, provides a service,
and redistributes the rewards to investors proportionally to their respective contri-
butions.

No, Partial Redistribution. If an investee does not properly redistribute wealth
earned thanks to its investors because of a deviation from the redistribute behavior,
it may gain a financial advantage. However, this would come at the cost of a loss of
reputation in the open blockchain system and hurt both the Fairness and Economics
of the system due to its impact on Investors, Contractors, and other Investees. Such a
behavior could be easily monitored and blacklisted. This has already been observed
in the Tezos blockchain3.

4.4 Conclusion

This chapter introduced a taxonomy of blockchains incentive vulnerabilities for net-
worked intelligent systems based on the AGR4BS presented in Chapter 3. It can
help researchers and developers better understand the different types of blockchains
available and make informed decisions when designing these systems. The pre-
sented taxonomy computes the priority scores for each incentive vulnerability and
characterizes them as role deviations concerning nominal behavior and inventives.
It then lists and ranks several known vulnerabilities but provides a way to quantify
and classify newly found ones. This taxonomy provides the foundation for char-
acterizing incentive vulnerabilities and supports a role-based classification scheme.
Based on the results, the rest of the thesis will be focused on high priority scores
vulnerabilities (Table 4.2) such as Consensus Delay and Selfish Block Production both
linked to the Block Proposer role. Given the scale and complexity of blockchain sys-
tems and their participants’ autonomy, the approach best suited to incentive vul-
nerability exploration and discovery is, in our opinion, Multi-Agent Reinforcement
Learning (MARL). This approach allows for the study of participants with ratio-
nal objectives (i.e., profit) or non-rational ones (i.e., impact). MARL can be applied
to ensure a secure update process if the incentive mechanism undergoes modifica-
tions. Additionally, the multi-agent interactions could be represented and learned
to discover realistic behavior shedding light on previously unknown vulnerabilities,
which could then be studied using more interpretable methods. To conduct such
studies, a blockchain simulator compatible with MARL must be developed, this will
be the topic of Chapter 5 that will add the missing piece for an automatic vulnera-
bility study in Chapter 6.

3Tezos, https://tezos.com/, last accessed on 10-12-2022

https://tezos.com/
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Chapter 5

A generic blockchain simulator

This chapter describes the generic blockchain simulator we developed during the
thesis, the code and embedded documentation can be accessed on GitHub at the
following url : https://github.com/hroussille/agr4bs. We first cover the existing
simulators and explain why they are not suitable for us in Section 5.1, then we dis-
cuss the intent with which our simulator was developed in Section 5.2. Finally, we
go over the generic and blockchain specific components in Section 5.3 and Section
5.4 to give a clear overview of its architecture and how it can be used to simulate any
blockchain systems.

5.1 Related Work

There exist several so-called generic blockchain simulators in the literature. Most of
them are covered in (Albshri et al., 2022). They do adopt an event based mechanism
(Babulak and Wang, 2008), aligned with the nature of blockchain systems. How-
ever, they are not always adopting an agent based approach, and some of them only
consider the network itself, focusing on transactions and block diffusion times ac-
cording to a specific network topology, and not on incentive analysis, sometimes not
even allowing such studies due to design choices.

The closest simulators to our needs are BlockSim (Alharby and Moorsel, 2019),
MAX (Gürcan, 2024) and DAGSim (Zander et al., 2019).

BlockSim, because it is written in Python, supports multiple models such as Bit-
coin and Ethereum 1.0 and is easy to use or modify in our opinion.

Still, it does not use an agent based approach, and therefore does not have the
Role and Behavior granularity needed for specific incentive based studies.

MAX on the other hand is built on MaDKit (Gutknecht and Ferber, 2000), and
adopts a clear agent-oriented approach now grounded in the AGR (Ferber et al.,
2004) model. Despite the fact that MAX only lacks performance because of its non-
event based time management, it is arguably the most expressive and extensible
model that exists today. This because the policy of a single agent can be modified as
needed, granted that the researchers are able to read and modify the existing code.
It also supports several models such as Bitcoin, Hyperledger and Tendermint.

Finally, DAGSim is also an agent based simulator allowing for a fine granular-
ity. But it is strongly opinionated towards DAG based chains and therefore, lacks
genericity for our purpose.

None of those is designed with AI in mind, and while adding such compatibility
is possible, we assumed that creating a new simulator based on the AGR4BS model
from Chapter 3 and inspired by the state of the art would be beneficial for further
study and hopefully, for the blockchain research ecosystem as a whole.

https://github.com/hroussille/agr4bs
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It must be noted that another generic simulator was developed concurrently
to ours: JABS (Yajam et al., 2023) features several consensus algorithms such as
Nakamoto style, PoS and PBFT to only name a few. This simulator is very efficient,
allowing several thousand of nodes to run in a single simulation. However, it does
so using a simplistic representation of blockchain nodes, which is not suitable for
our needs as it lacks expressivity.

5.2 Design rationale

5.2.1 Modularity

Due to the diverse nature of blockchain systems and the multitude of possible roles
that can be played within them, the simulator is modular by design through groups,
roles and behaviors. One should be able to easily swap the blockchain, state or
network implementation or plug in additional roles. This modularity is key for the
simulator to stay relevant in the future, as blockchain systems are subject to rapid
evolution. For this reason, every high level component is exposed as an abstraction
that developers can extend to fit their specific needs.

5.2.2 Reproducibility

As this simulator is built as a tool for research purposes, the results that it may yield
must be explainable and, most importantly, reproducible by the scientific commu-
nity. While a multithreaded program can be deterministic, there are many side ef-
fects induced by the Operating System which should be taken into account (e.g.,
Interruptions, Preemptive Process Scheduling). This makes the single threaded ap-
proach both simpler to implement and unaffected by the aforementioned side ef-
fects. Therefore, the simulator runs in a single thread, but one can use it in a multi-
threaded fashion if reproducibility is less important than performance.

5.2.3 Reinforcement Learning Compatibility

The simulator must be usable for RL studies. Since the most widely used frame-
works and sets of environments, such as Gym (Brockman et al., 2016), are written in
Python, we use this language to favor accessibility and ease of use.

It must be noted however that we do not enforce the Gym environment API, as it
would put unnecessary constraints such as synchronous agent actions, which does
not fit the intended goal of simulating blockchain systems which are asynchronous
by nature. The simulator being modular, one can always create a custom environ-
ment implementation to enforce any required constraint.

5.3 Generic components

In this section, we give a description of the high level components of the simulator to
give a clear understanding of how they interact with each other to ultimately model
any blockchain system while not being limited to it.

5.3.1 Messages

This simulator is fully event-driven. In the scope of our simulator, an event is always
associated to a Message, and vice versa. The UML description of a Message can be
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found in Figure 5.1. We describe in the following sections how a Message reception
effectively triggers behaviors of an Agent upon reception.

A message must be sent by and to someone which is represented by the origin
and recipient properties, which are the unique identifiers of the concerned Agents.

The reception date is automatically computed by the Network, depending on the
virtual network conditions in place when the message is sent. This attribute is the
primary key used to order messages. In the case where two messages share the
same date, a secondary key called nonce is used to compare them, thus ensuring
reproducibility.

FIGURE 5.1: UML Diagram of the Message class

5.3.2 Network

The Network is a singleton or a set of singletons responsible for providing a means
of communication between Agents. It can emulate network instability with arbitrary
long network delays and message drop probability. The UML description of the
Network can be found in Figure 5.2.

As mentioned in 5.3.1, the network enforces total ordering of all the Messages
sent. This is done with the use of a priority queue: messages with the lowest date
and lower nonce will be consumed first.

It is important to mention that the Network does not deliver any messages, its
purpose is only to record and order messages.

Agents that are holding a reference to a Network can send two types of messages
using send_message and send_system_message. The former is used to simulate com-
munication: related messages can be delayed by up to N milliseconds and even
dropped with a drop_rate probability. The latter is used for system messages. Those
cannot be delayed nor dropped and are mostly used during initialization.

The entity consuming Messages from the Network can verify if there is any queued
message with has_message and consume them one by one through get_next_message.

The Network class is essentially a multi producer multi consumer system where
Agents are the message producers.

5.3.3 Factory

All dynamic components accept an optional Factory parameter on construction. The
UML description of the Factory can be found in Figure 5.3. The Factory is centralizing
all data structures and implementations required for the simulation. The default
Factory only gives access to the Network, but it is intended to be extended to fit the
developers’ needs.

In the context of blockchain systems, the implementation of Block, Transaction and
Blockchain are typically accessed through the Factory. This implies that the behaviors
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FIGURE 5.2: UML Diagram of the Network class

are unaware of the implementation details of the components they get through the
factory, allowing to easily change the simulation details without impacting the Roles.

The default implementation of build_network is stateful and treats the Network as
a singleton shared by all entities requesting it from the Factory.

FIGURE 5.3: UML Diagram of the Factory class

5.3.4 Agents

The primary component is the Agent. This abstraction is able to endorse one or
several Role. Role is defined as a collection of low level primitives, like in AGR4BS.
The UML description of the Agent can be found in Figure 5.4.

An agent may represent a node in the blockchain, a smart contract, or any other
entity deemed necessary to the simulation. It is uniquely identified by its name
and able to take on several non-conflicting Roles, i.e., an agent cannot endorse two
different implementations of the same role.

The framework allows for various agent types that will be defined later on. The
Agent class is a generic abstraction, akin to a role container, but is unable to commu-
nicate, as it lacks the primitives to do so. This allows for the subtypes of Agents to
define or omit those communication primitives when needed.

One can add a Role to an Agent with add_role, or check if an Agent has a specific
Role with has_role. has_behavior allows to verify that a specific behavior is available,
according to the played Roles. If a Role is played by an Agent, the underlying imple-
mentation can be fetched with get_role and removed with remove_role.

Context

All Agent instances have a Context: a data structure, owned by the Agent, that Roles
are allowed to modify when they are added, executed and removed. Context can be
viewed as the Agent state.

Context is a secured container processing ContextChange that are standardized de-
scriptions of changes to apply or revert to the Context with the apply_context_change
and revert_context_change methods, respectively. It enforces idem-potency for ad-
ditions and keeps a reference count for any property held within it, ensuring that
removing a Role will not remove properties that are also used by other Roles.
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FIGURE 5.4: UML Diagram of the Agent class

When a Role is mounted to the Agent owning the context, the Agent queries the
Role for its ContextChange and uses the mount method to get the dictionary of keys
and values to add to the Context. Upon removal of a Role. the unmount method is
called to get the list of properties to remove from the context.

The UML diagram shown in Figure 5.5 cannot represent the dynamics of the
Context: one or more properties can be added to the class instance at runtime when a
ContextChange is processed. Similarly some properties may be removed dynamically
when a ContextChange is reverted.

FIGURE 5.5: UML Diagram of the Context class

5.3.5 ExternalAgents

ExternalAgent is a subclass of Agent implementing all communication and event
primitives. So, it is able to send and broadcast both normal and system Messages. Ad-
ditionally, ExternalAgent can receive messages through the handle_message method,
which will internally trigger any linked event with fire_event. The fire_event is also
exposed publicly, so that developers may trigger any event at any time. This can be
useful during testing or debugging.

ExternalAgent can also accept scheduled behaviors from Roles. When a Role ex-
poses such a feature, the ExternalAgent is able to send itself a system message, con-
taining the behavior to be triggered, with a delivery date set in the future. Upon
reception of a scheduled Message, all the relevant handlers are executed through
run_schedulable_handler.
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FIGURE 5.6: UML Diagram of the Agent class

5.3.6 Groups

The notion of Group is very well defined in AGR (Ferber et al., 2004) and used exten-
sively in Chapter 3 to model various blockchain systems. In practice, groups are not
a concrete entity and therefore do not require a specific class or data structure. For
this reason, the simulator abstract groups as subnetworks shared only by a subset of
Agents that they can use to communicate privately.

5.3.7 Roles

The Roles are the backbone of the simulator. Composing them into an Agent leads
to the high level functionalities that the developers require. The UML description
of the Role can be found in Figure 5.7. Each Role has a specific type, which ensures
that an Agent cannot use conflicting Roles, and can specify the agent_type that it is
expected to be mounted on. Because Roles are meant to be composed, they may
exhibit some dependency relationships.

In that case, the developer can either bundle the dependent Roles together in a
single Role or specify each Roles dependencies in the dependencies array, and mount
the Roles in order of dependency. The generic Agent implementation checks if all the
dependencies are met before adding a Role.

The most important part of a Role is its behaviors, which will be automatically ex-
tracted and bound to the Agent at runtime. The Role class does not have any behavior
since it is expected to be inherited.

The behavior’s property is technically a function which will dynamically scan the
Role instance for static functions marked for exportation (@export modifier). This
allows the developers to choose which behavior to expose or hide from other Roles.
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FIGURE 5.7: UML Diagram of the Role class

Declaring a behavior

Behaviors part of a Role will be added dynamically to an Agent when it endorses that
Role. For this reason, behaviors must be declared as static methods and explicitly
marked for exportation as shown in Listing 5.1.

1 @staticmethod
2 @export
3 def do_something(agent: Agent):
4 """
5 This behavior will be exported
6 """
7 pass

LISTING 5.1: Declaring a behavior

Binding behavior to events

If a behavior needs to be triggered whenever a particular Message or event is re-
ceived, the simulator provides the means to do so with the @on modifier which, in
this case, is used to set behavior metadata. This metadata will be read by the Agent
that will internally bind the events to the specified behavior as shown in Listing 5.2.
The @on modifier accepts an arbitrary number of event names if the developers ever
need to bind a behavior to more than one event.
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1 @staticmethod
2 @export
3 @on(’myEvent ’)
4 def event_bound_behavior(agent: Agent):
5 """
6 Runs when agent receives the event ’myEvent ’
7 """
8 pass

LISTING 5.2: Biding behavior to events

Scheduling behavior

Alternatively, it is also possible to schedule behaviors to run periodically as shown
in Listing 5.3.

1 @staticmethod
2 @export
3 @every(minutes =2)
4 def scheduled_behavior(agent: Agent):
5 """
6 Runs every 2 (virtual) minutes
7 """
8 pass

LISTING 5.3: Scheduling behaviors

The agent registering that behavior will send itself system messages every 2 vir-
tual minutes as defined in Section 5.3.4.There is no limit on the number of scheduled
behaviors.

5.3.8 Environment

The Environment is a special kind of Agent used to manage the Agents and simula-
tion parameters. It holds the list of simulated Agents and allows the propagation
of high level functionalities to all of its members, such as initialization and cleanup
operations.

The lifecycle of the Environment starts with the addition of agents, then the ini-
tialization process can be started with the init method, which will be propagated to
any Agent contained in the Environment. From this point on, the simulation can take
place until stop is called. The same environment can be reused given that the cleanup
method is called, thus resetting the Agents and simulation state.

FIGURE 5.8: UML Diagram of the Environment class
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5.3.9 Scheduler

Scheduler is the one running the simulation by holding references to both the Environ-
ment and the Network. Developers can call the run method that will execute the step
method repeatedly until the stop condition is reached or there are no more messages
to consume in the Network.

For each step, the top most priority message is extracted from the queue and
the current_time is set to the message delivery date. The Message is then given to
the recipient ExternalAgent through its handle_message method if it is still part of the
simulation, otherwise the Message is discarded.

FIGURE 5.9: UML Diagram of the Scheduler class

5.3.10 Overview

FIGURE 5.10: Overview of the simulator’s architecture
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1 """ Create the Environment with a custom Role """
2 env = agr4bs.Environment ()
3 env.add_role(agr4bs.roles.SomeEnvironmentRole ())
4

5 """ Create 10 Agents with a custom Role and add them to the Environemnt
"""

6 for i in range (10):
7 agent = agr4bs.ExternalAgent(f"agent_{i}")
8 agent.add_role(agr4bs.roles.SomeAgentRole ())
9 env.add_agent(agent)

10

11 """ Define the starting time of the simulation """
12 epoch = datetime.datetime.utcfromtimestamp (0)
13 scheduler = agr4bs.Scheduler(env , current_time=epoch)
14

15 """ Initialize all the simulation components """
16 scheduler.init()
17

18 """ Define the stop condition : 10 (virtual) minutes of simulation """
19 def condition(environment: agr4bs.Environment) -> bool:
20 return environment.date < epoch + datetime.timedelta(minutes =10)
21

22 scheduler.run(condition)

LISTING 5.4: API Overview

5.4 Blockchain Specific Components

This section describes the components required for simulating any blockchain sys-
tem. Those include Transactions, Blocks and of course, the Blockchain itself alongside
its State. Most of those components are public abstractions intended to be extended
to fit specific requirements.

5.4.1 Transaction

A Transaction is a paid, public exchange of information and / or value between two
participants. While the sender must be an an External Agent, the receiver may be:

• An External Agent

• A Smart Contract

The UML description of the Transaction can be found in Figure 5.11. Most crypto-
graphic operations are abstracted away, this includes for instance signatures which
are required for Transaction in all public blockchains.

When creating a Transaction one must provide some required parameters such
as the origin (i.e., sender’s unique identifier), the fee to incentivize block producers
to include the Transaction in a Block, the nonce, value and recipient of the Transaction
denoted by the parameter to.

The nonce is used to provide a total order for the transactions issued by a single
account. Its value should be set to the number of previously sent transactions by
origin plus one.

The payload is optional. It is an array of bytes used to communicate information
and parameters with smart contracts accounts.

As in real blockchain systems, this payload field can be used to permanently store
vanity data on-chain assuming that the Transaction has been included.
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When an Agent creates a Transaction, its hash is automatically computed, uniquely
identifying the Transaction and allowing it to be diffused to other participants for an
inclusion in the blockchain. Other participants receiving a broadcasted Transaction
will verify its validity by calling compute_hash.Verifying if a Transaction is fully valid
requires to know the full State of the blockchain, which will be defined later on.

FIGURE 5.11: UML Diagram of the Transaction class

5.4.2 Block

A Block is essentially a container for Transactions and meant to be cryptographically
linked to a parent Block.The only exception to this rule is the genesis block, which,
by definition, is the first block of the chain. The UML description of Block can be
found in Figure 5.12.

When an Agent creates a Block it must provide a list of Transactions to include, as
well as the creator unique identifier (e.g., itself ) and the parent_hash which is arguably
the most important parameter defining the hash of the parent Block. The block will
internally compute its total_fee based on the included transactions, and automatically
set its hash using compute_hash.

Similarly to the Transaction, when an Agent receives a new Block it first checks its
validity by calling compute_hash. Additional validity checks also require the State of
the blockchain to be known and must be implemented in the relevant Roles.

The height and invalid properties are initially set to the height of the parent Block
plus one and false respectively, but Agents receiving this Block will override those
values in their local blockchain based on their view of the blockchain.

FIGURE 5.12: UML Diagram of the Block class
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5.4.3 Blockchain

The basic blockchain implementation is abstract, meaning that it cannot be instanti-
ated because some key components are missing, such as the fork choice rule and the
constraints to respect on block addition. The UML description of the Blockchain can
be found in Figure 5.12.

On creation, the Blockchain only requires a genesis Block, which is by default the
head of the chain.

Block addition can be done with two primary methods: add_block and add_block_strict.
add_block_strict only allows adding a block if the parent Block is known and included
in the chain. add_block is used to add one or many blocks for which the parent block
may not already be known. In that case, the block will be recorded in a staging
area, and automatically unstaged if its parent Block is added. add_block will auto-
matically release any staged blocks, and call add_block_strict for all Blocks that are
ready for inclusion. Both functions will update the head of the chain, possibly using
the blockchain specific implementation of find_new_head if the addition of blocks did
not extend what was previously considered the head.

Aside from the core functionality of Block addition, the base Blockchain imple-
mentation also exposes a set of low-level helper methods. One can easily check if a
Block is part of the Blockchain data structure with get_block, get all the children of an
included Block with get_children, or even extract the whole chain using get_chain or
just a subchain between two Blocks with get_subchain.

In most blockchain systems, a block can be considered invalid. This can be re-
flected on the data structure by using mark_invalid that will set the invalid flag of the
block and all of its children to true.

FIGURE 5.13: UML Diagram of the Blockchain class

5.4.4 State

To fully define the State, we must first define the notion of Account, StateChange and
Receipt.

Account

The Account class holds all the information relative to a particular Agent on the
Blockchain. The UML description of the Account can be found in Figure 5.14. An
Account is composed of a balance (i.e., how much that accounts owns in the native
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currency of the blockchain), an optional InternalAgent which is the underlying im-
plementation of the smart contract represented by an on-chain Agent, a name (i.e.,
the on-chain unique identifier of the Agent owning that Account), a nonce keeping
track of the count of public transactions of the Account, and finally a storage which is
a simple key, value dictionary holding arbitrary information managed by the smart
contract of that Account if any.

An Account can be copied using the copy method, and mutated. Mutation can
be of several types such as a balance change through add_balance and remove_balance,
a nonce change with increment_nonce and decrement_nonce or a storage change using
set_storage_at or update_storage. All the aforementioned changes are the result of the
execution of a Transaction against a given State. The base implementation of State
only returns copies of the Accounts to avoid side effects and ensure consistency.

FIGURE 5.14: UML Diagram of the Account class

StateChange

A StateChange is a precise, atomic description of an operation to execute on the State.
All StateChange can be reverted by applying an opposite StateChange in the case that
a Block and all of its included Transactions are to be reverted following a blockchain
reorganization. The UML description of the StateChange is given in Figure 5.15.

A StateChange only holds an account_name and a type. It is intended to be sub-
classed to fully cover the allowed state operations. The revert method of any Stat-
eChange must return an opposite StateChange. The default implementation defines
the following changes CreateAccount, DeleteAccount, AddBalance, RemoveBalance, In-
crementAccountNonce, DecrementAccountNonce and UpdateStorage. Developers are en-
couraged to add their own specific StateChange if they decide to extend the definition
of an Account to fit some simulation specific need.

Account State Change

When an Account needs to be created or deleted, it is done using a CreateAccount or
a DeleteAccount. The State will interpret them correctly according to their type, and
mutate the underlying accounts. An Account is created the first time it is interacted
with and may only be deleted if the transaction that created it is to be reverted.
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FIGURE 5.15: UML Diagram of the StateChange class

FIGURE 5.16: UML Diagram of the CreateAccount and DeleteAc-
count classes

Nonce State Change

Whenever a Transaction is processed against the current State, the first StateChange
will be an IncrementAccountNonce, thus updating the number of Transactions sent by
the specified Account. If a Transaction is reverted, the transaction count of the sending
Account must be decremented, which is done with the opposite StateChange called
DecrementAccountNonce.
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FIGURE 5.17: UML Diagram of the IncrementAccountNonce and
DecrementAccountNonce classes

Balance State Change

Each Account balance may be updated whenever a Transaction is processed, either
because it is sending or receiving value. State represents such operations using two
StateChanges: AddBalance and RemoveBalance. The only required parameter is the
value, which represents the delta to apply to the balance.

FIGURE 5.18: UML Diagram of the AddBalance and RemoveBalance
classes

Storage State Change

The last StateChange is used to mutate an Account storage. It is only useful when
using a VM implementation that supports smart contracts. The base implementation
expects dictionaries of differences, one for the transition from the initial state to the
resulting one, and another one for the opposite direction.
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FIGURE 5.19: UML Diagram of the UpdateAccountStorage classe

Receipt

After a Transaction is processed by applying all of its StateChange, the Receipt is kept
available in the State. The UML description of the Receipt can be found in Figure
5.20.

A Receipt contains overall information about the execution of the Transaction such
as the reverted flag. When a Transaction was reverted, the reason can be specified
using the revert_reason field of the Receipt.

Regardless of the execution status of the Transaction, all of the StateChanges that it
generated are saved in the Receipt and accessible through the state_changes property,
so that this can be used if the Transaction ever needs to be reverted.

A Receipt also holds a direct reference to the Transaction it describes under the tx
property.

FIGURE 5.20: UML Diagram of the Receipt class

State

With all the above components defined, we can now explain the behavior of the
State. The State data structure is a wrapper around accounts managing all read and
write operations on behalf of the caller.

State exposes an RPC like API to read the underlying state, allowing anyone to
query Account related information. One can verify if an account exists with has_account
and, if it does, get its balance with get_account_balance, and its nonce with get_account_nonce
or a specific storage key with get_account_storage_at.

Additional helper functions are available to get a deep copy of an Account through
get_account or extract only its storage or smart contract implementation with get_account_storage
and get_account_internal_agent respectively.
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State mutation is done using apply_state_change or apply_batch_state_change, where
the State owner (i.e., an ExternalAgent) would execute one or several Transactions
contained in a Block against a copy of the state and apply all the StateChanges con-
tained in their receipts on the original. This mutation API also implies that applying
or reverting a Transaction is functionally equivalent from the point of view of the
State, it is simply applying a list of StateChanges in both cases.

FIGURE 5.21: UML Diagram of the State class

5.4.5 Virtual Machine

The last blockchain specific is the Virtual Machine, or VM. Its only purpose is to
execute a Transaction against the current State and return the Receipt. This Virtual
Machine can be made to support smart contracts invocations if necessary. It exposes
a single process_tx method that should execute an arbitrary transaction assumed to
be valid, and return a Receipt.

FIGURE 5.22: UML VM of the State class

5.4.6 Factory

All the blockchain specific components defined previously must be accessible to all
Agents and Roles. The UML description of the blockchain specific Factory is given in
Figure 5.23 to allow the building. The base Factory is therefore extended to return all
blockchain specific components necessary during the simulation.
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FIGURE 5.23: UML Diagram of the blockchain specific Factory class

5.4.7 Roles

The Roles need to be defined according to the specific blockchain to simulate. We
recommend, but do not enforce, following the Role definitions from Chapter 2.
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Chapter 6

Case Study: MARL Analysis of
Incentive Vulnerability in
Ethereum 2.0

In this chapter we showcase a MARL experiment aiming at studying an incentive
vulnerability present in the Ethereum 2.0 protocol. This vulnerability is an Ethereum
specific version of selfish block creation. It was chosen according to the taxonomy
defined in Chapter 4 and the analysis is conducted using our role-based simulator
defined in Chapter 5, both of which being grounded within the AGR4BS model from
Chapter 3.

This attack fits within a high priority score as shown in Table 4.2, as it is relatively
easy to setup by the attackers and involves a very well known blockchain, namely
Ethereum 2.0.

In this attack, the attacker(s) are economically incentivized to fork the canonical
chain in order to steal the attestations included in honest blocks, it uses some specific
protocol functionalities against itself and cooperative malicious behavior to ensure
that the fork is favored against what was previously considered the main chain.

This chapter starts by further explaining the Ethereum 2.0 protocol in Section 6.1,
we then present the attack in Section 6.2. The settings of the experiment are detailed
in Section 6.3 and the results in Section 6.4. Finally, we conclude this chapter in
Section 6.5.

6.1 Ethereum 2.0

In this section we give more details about the Ethereum 2.0 protocol than in Chapter
3, so that the reader can better understand the considered attack. An even more
detailed explanation can be found in (Pavloff et al., 2023), or in the Ethereum 2.0
book1 which was used extensively for the implementation of the Ethereum 2.0 model
in the simulator defined in Chapter 5. Throughout this section the term Validator will
be used to refer to the ETH Validator defined in Chapter 3.

6.1.1 Epochs and Slots

The Ethereum 2.0 protocol actions all take place within well defined time frames
called Epoch and Slot as shown in Figure 6.1. An epoch is composed of 32 slots each
lasting 12 seconds. For each slot, a validator will be elected block proposer and given
the opportunity to create a new block. The slot duration of 12 seconds can therefore
be seen as the block time when the system is working nominally.

1https://eth2book.info last accessed on 14/09/2024

https://eth2book.info
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FIGURE 6.1: An Ethereum 2.0 Epoch composed of 32 Slots

6.1.2 Checkpoints

The Ethereum 2.0 consensus operates on epochs, the first block of an epoch is called
a checkpoint, that is, a block for which votes will be issued to influence its status.
A checkpoint can be in one of three states at any given time: proposed, justified or
finalized.

A new checkpoint, refereed here as the target, is by default in the proposed state
until a supermajority vote (i.e., > 2/3rd of the total stakes) links it to a previously justi-
fied checkpoint, refered here as the source. The source checkpoint becomes finalized
and all the blocks before it are considered final too. The target checkpoint can now
be used as the source in the next epoch to finalize another chunk of the blockchain.
This process is represented in Figure 6.2.

FIGURE 6.2: Ethereum 2.0 finalization process where a source, jus-
tified checkpoint (blue) is linked by a supermajority link (red) to a
target, proposed checkpoint (white), leading to the justification of the

target and the finalization (green) of the source.

This two step finalization process on checkpoints, and therefore on epoch, is
what gives Ethereum 2.0 a finalization time of 12 minutes in the best case scenario.

6.1.3 Validator Duties

In Ethereum 2.0, validators have two main duties: Attestations and Block Proposi-
tion which are represented by the Block Endorser and Block Proposer roles in Figure
3.15.

Attestation

An Ethereum 2.0 attestation is a form of block endorsement as defined in Chapter
3. Each slot has 1

32 of the validators considered as attesters, meaning that during
a full epoch, all active validators will be participating by means of the attestations
to the justification and finalization process described in Section 6.1.2. Ethereum 2.0
attestations are broadcast and can be included in the next block at the earliest as
shown in Figure 6.3.
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FIGURE 6.3: An attestation produced at slot N can be included in a
block at slot N + 1 at the earliest.

An attestation contains 3 information: a root, a source and a target. The root is the
current head of the blockchain, as seen by the validator at the moment the attesta-
tion was created. This will be used dynamically by the fork choice rule to resolve
forks. The source is the last justified checkpoint, and the target is the checkpoint of
the current epoch. Both will be used to finalize an additional portion of the chain.
An honest validator will submit an attestation when receiving a new block or if one
third of the slot time has passed.

For convenience, any subsequent representation of attestations will display them
in the slot where they are included, and linked to the block targeted by their head
vote unless otherwise specified.

Block Proposition

For every slot, one validator is considered the only legitimate entity to propose a
new block. Being selected is an opportunity to create and propose a new block, but
not an obligation in any way as there is currently no penalty for failing to propose a
new block.

As Ethereum 2.0 is a PoS system, each validator has a stake of si. The total
amount of active stakes is noted ∑i=k

i=0 sk. The probability for a validator to be selected
as proposer at any given slot is therefore si

∑i=k
i=0 sk

. A block proposer is incentivized to

include all pending and valid attestations. Figure 6.4 shows how proposed blocks
include attestations created at the previous slot.

FIGURE 6.4: High level Ethereum 2.0 validator duties
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6.1.4 The Fork Choice Rule

The fork choice rule is a core protocol mechanism that determines which chain is the
canonical chain in the event of competing forks. Ethereum 2.0 uses the LMD GHOST
(Buterin et al., 2020) (Latest Message Driven Greediest Heaviest Observed SubTree)
rule.

LMD GHOST selects the fork with the most head votes from validators, prioritiz-
ing the heaviest chain as the valid one. It consists of the following steps:

1. Select the latest attestations sent by each validator.

2. For each attestation, add a weight proportional to the validator active stake to
the block refered to by the attestation and all of its parents.

3. Starting from the latest finalized block, traverse the chain and chose the highest
weight candidate in case of a fork.

‘ The resulting block is guaranteed to have no child, therefore, to be a suitable head
of the chain. An illustration of this process is shown in Figure 6.5.

FIGURE 6.5: Ethereum 2.0 fork choice rule: LMD-GHOST: A fork be-
tween the block of slots N + 2 and N + 3 is resolved by applying the
LMD-GHOST algorithm based on the validators attestations (blues).
We assume that validators stakes are uniform for simplicity. Attesta-

tions are displayed where they are created.

An important note on the fork choice rule is that it takes into account the attes-
tations of all validators regardless if those attestations are already included into a
block. It precomputes any unrealized justification and finalization to run GHOST
only on viable branches (i.e., branches that are descendant of the last justified check-
point)

Proposer Boost

The original LMD-GHOST algorithm was proven to be vulnerable to so called bal-
ancing attacks (Neu et al., 2021), allowing for long lasting fork threatening the ability
of the chain to finalize blocks.
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To counter this, the proposer boost was created. It is essentially a significant
amount of artificial weight added to timely blocks (i.e., block proposed within the first
third of a slot). This weight is defined as p ∗ a where p is currently set at 0.4 and a

represents ∑i=k
i=0 sk
32 , the average per-slot voting power. It is only taken into account

during the slot that the proposed block belongs to, and favours liveness for forks
resolutions as it gives a great power to honest and timely block poposers to influence
the canonical chain.

6.1.5 Rewards and Penalties

As a public blockchain, The Ethereum 2.0 protocol must reward the expected be-
havior and punish the unwanted ones. All protocol rewards are expressed in terms
of the base reward noted R, which is defined as the expected reward of an optimally
performing validator.

R = Si ∗ (64/(4 ∗
√
(

i=k

∑
i=0

sk))) (6.1)

Several components, each bound to specific duties, come together to compute
the actual reward of a validator for a given epoch as shown in Table 6.1.

Duties Weight
Timely source vote Ws = 14
Timely target vote Wt = 26
Timely head vote Wh = 14
Participated in a sync committee Wsync = 2
Proposed a block when it was due Wb = 8

TABLE 6.1: Weights of the different validator duties.

We purposely ignore the sync committee rewards as it is linked to a technicality
of the Ethereum 2.0 attestation aggregation protocol and is not relevant here.

The notion of timeliness is defined as the delay in slots between the attestation
emission and its inclusion in a block of the canonical chain. If the timeliness require-
ment is not met, the reward is nullified for the specific duty.

The fork choice rule defined in Subsection 6.1.4 requires up to date head votes,
therefore the timeliness requirement is set to 1. Target votes can be valuable as long
as they refer to the current or previous epoch only, therefore the timeliness require-
ment is set to 32. Finally, the timeliness requirement for source votes is arbitrarily
set to 5.

Ultimately, if a validator fulfilled all of its duties during a given epoch, it may
expect a reward of:

Ws + Wt + Wh + Wsync + Wb

64
= R (6.2)

Block proposition may seem under rewarded, but proposers also get the trans-
actions fees and 8

64 ∗ R for each valid attestation that they include in their proposed
block. This incentivizes proposers to include as many valid attestations as they can
and helps the protocol as it decreases the economic viability of witholding attacks.

The penalties are simple, if a validator misses a source or target vote, the penalty
is equal to what it would have been rewarded if they were valid. Head votes and
block propositions can only be rewarded: missing them does not incur any penalty.
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Slashing

Some actions are indubitably malicious and lead to a significant penalty called a
slashing. There are currently only three slashable offences, all relating to equivoca-
tion:

1. Double block proposition for the same slot

2. Double voting

3. "Surround" attestations

1) is self explanatory. 2) is triggered if one validator issues two or more attesta-
tions with different target checkpoints in the same epoch. This can happen during a
long lasting fork, but only one attestation per epoch is allowed. 3) is slightly more
complex: it is triggered if one validator makes an attestation that surrounds or is
surrounded by one of its previous attestations.

A proven slashable offence immediately leads to 1/32 of the guilty validator’s
balance to be burned and it is registered for a forced exit.

6.2 Selfish Block Creation in Ethereum 2.0

This section explains the potential vulnerability inspired by (Carlsten et al., 2016)
that we will be exploring trough a MARL based experimentation.

6.2.1 Attack description

As shown in the previous section, the Ethereum 2.0 protocol uses a fork choice rule,
and therefore allows for forks. Those forks may happen because of the network de-
lays that can affect any distributed system, but they may also be caused by malicious
block proposers that purposely create a fork as depicted in Figure 6.6.

FIGURE 6.6: A malicious block proposal that purposely does not ex-
tend the head of the canonical chain.

This attack seems free at first, but honest validators that were attesters at slot
N + 2 will have issued and propagated their attestations for the block at slot N + 2
as soon as they received it.
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Since the fork choice rule described in 6.1.4 is stateful, most honest validators will
consider the block at slot N + 2 to be the canonical chain and disregard the block at
slot N + 3 as depicted by Figure 6.7.

FIGURE 6.7: In this scenario with 32 validators, each having equal
stakes the validators favors the block at slot N + 2 because the at-
testation issued at that same slot were not yet aware of block N + 3.
The proposer boost (0.4 ∗ 32

32 ) is not enough to counteract the not yet
included attestation (dashed line) and the fork choice rule does not

select the malicious fork.

Note that if the malicious block proposer does include the honest attestations
created at slot N + 2, the result is the same since the fork choice rule takes them into
account regardless of their inclusion in a block. It may however want to include all
attestations present in the forked block at slot N + 2 to get the 8

64 ∗ R reward for valid
attestations. This strategy was omitted from the diagram for simplicity.

If we add accomplices then the malicious group may force the fork to be selected
by the honest participants in two different ways.

The first case is when the attester at slot N + 2 is malicious too and knows that
the proposer at slot N + 3 will attempt a fork. In this situation the malicious attester
votes for a previous block to avoid giving any weight to the forked block N + 2 as
depicted in Figure 6.8.
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FIGURE 6.8: The malicious attester at slot N + 2 does not respect for
fork choice rule and votes for the block at slot N + 1, therefore the
malicious block at slot N + 3 is favored by the fork choice rule because

of the proposer boost, therefore, honest validators attest to it too.

The second strategy is possible if the attester at slot N + 3 is also malicious and
attests to the malicious block of the same slot as shown in Figure 6.9. The malicious
attestation is taken into account by the fork choice rule before its inclusion in a fol-
lowing block. This leads to a tie between both candidate head block that is broken
in favor of the malicious block when considering the proposer boost, assuming that
the proposal was timely.

FIGURE 6.9: The malicious attester at slot N + 3 immediately votes
for the malicious block, disregarding the honest fork choice rule and

favoring the malicious block.

6.2.2 Attack motivation

This attack requires cooperation from the malicious group, and can be motivated
either by the will do disrupt the system, or by the profit that stems from the attesta-
tion(s) of the forked block which are included in the malicious block.

Since we are focusing on rational attacks, we only consider the economic moti-
vation, where the forked blocks contain at least one attestation. Moreover, including
two or more attestations, that is, stealing the forked block attestations, would make
the malicious strategy more profitable than the honest one. The re-inclusion of the
forked block attestations were purposely omitted from the previous figures to bring
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light on the mechanics of the attack: Figure 6.10 shows the end goal of the attack.
The protocol allows such re-inclusion since, when the fork happens, both branches
have their own state, therefore the attestation(s) is valid in each of them.

FIGURE 6.10: The malicious proposer includes the attestation(s) from
the forked block in its own, hoping to steal the proposer reward.

6.3 Simulation Settings

This section details the settings and parameters used in our simulation. We cover
the Environment, Agents and their Actions as well as the hyper parameters ruling this
simulation.

6.3.1 Environment

The environment is a correct implementation of the Ethereum 2.0 protocol embed-
ded within the simulator, described in Chapter 5, featuring all necessary compo-
nents.

Epochs, Slots, Attester selection and Block Proposer election are handled by spe-
cial role given to the environment. This role will trigger the slot update every 12
virtual seconds and the epoch update every 32 slots. Upon changing epoch, it will
recompute the list of block proposers and attesters for all slots of the new epoch
and communicate it to the validators using a system message. All simulated mes-
sages are subject to network delays averaging 100 milliseconds and can be lost with
a probably of 1/100. Each simulation is composed of 500 repetitions of a 1 epoch
long game.

6.3.2 Agents

From a blockchain point of view, the simulation contains 32 agents, each of them can
be honest of malicious on a per-role basis. Both groups are validators and therefore
play the roles of Block Proposer, Block Endorser and Blockchain Maintainer.

The honest agents strictly follow the protocol at all times using the default Ethereum
2.0 implementation: they can never deviate from it. The malicious group can deviate
from the nominal behavior to create a fork, but never commit any slashable offense.

The deviations are implemented in subclasses of the Block Proposer and Block En-
dorser roles. The modified Block Proposer role will not automatically attach any new



96 Chapter 6. MARL Analysis of Incentive Vulnerability in Ethereum 2.0

block to the current consensual head, but may use the parent block of the head in-
stead. The modified Block Endorser role can chose to deviate from the protocol im-
plementation to issue a head vote targeting either the parent of the consensual head,
a malicious block created at the same slot or, the consensual head if it decides to be
honest. It will never misbehave on the target or source votes during the simulation.
Out of the 32 agents, 8 of them are using the malicious Block Proposer role and 10 of
them are using the malicious Block Endorser role.

Agents are arranged as shown in Figure 6.11 as it exposes both the proposers and
the attesters to the four scenarios of interest during an epoch.

1. Malicious proposer and malicious attester at the same slot (slots 2, 14 and 26)

2. Malicious attester preceding a malicious proposer(slots 6, 18 and 30)

3. Malicious proposer with no malicious attester at the current or previous slot
(slots 10 and 22)

4. Malicious attester with no malicious proposer at the current or next slot (slots
8, 11, 20 and 23)

FIGURE 6.11: The 32 agents are deterministically arranged during an
Ethereum 2.0 epoch with 8 malicious block proposers (red square), 24
honest block proposers(green square), 10 malicious block endorsers

(red circle) and 22 honest block endorsers (green circle).

All blockchain agents are therefore proposing one block and one attestation per
epoch.

From a reinforcement point of view, we only consider two agents represented by
the malicious proposer policy and the malicious attester one (shared by the mali-
cious agents).

6.3.3 Models

The behaviors of both the proposer and the attester are implemented by neural net-
works trained with Deep Q Network (DQN) Mnih et al., 2013. The neural networks
are trained to minimize the Q value estimation error of state action pairs. In any
given state, the selected action is the one that maximizes the expected reward, the
policy π(s) selecting the action for the current state is therefore :

π(s) = argmax
a

Q(s, a) (6.3)
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Where s and a are the current state and action respectively. Both states and ac-
tions will be described shortly after for each model.

In practice, the action selection process is initially probabilistic, with probabilities
proportional to the Q values estimations. During the training of the neural networks,
it slowly transitions to a deterministic process and is fully deterministic at the end
of the simulation.

We note πp(s) and Qp(s, a) the policy and Q value estimation of the proposer,
and πa(s), Qa(s, a) the attester ones.

6.3.4 Actions

All actions are discrete and mutually exclusive, they only allow the agents to chose
between the honest and malicious strategy.

The deviated Block Proposer may choose to be honest or malicious upon creating a
new block.

• Honest: creates a new block extending the head of the canonical chain.

• Malicious: creates a new block extending the parent of the head of the canoni-
cal chain.

The deviated Block Endorser may also choose to be honest or malicious when at-
testing, but the execution of the malicious strategy will depend on the context of the
blockchain at the time the action is done.

• Honest: create an attestation whose head vote is for the head of the canonical
chain.

• Malicious : create an attestation whose head vote is for the current block if
it is malicious or for the parent of the head of the canonical chain if the next
proposer is malicious.

If an attester selects the malicious action in a context where neither of the next
or current proposer is malicious, it will issue a head vote for the parent of the head
of the canonical chain as this would lead to an incorrect head vote, and is therefore
equivalent to a penalty.

6.3.5 Observations

Block Proposer

Block proposers observations are a vector [Mi−1, Mi] where:

• Mi−1 ∈ 0, 1, whether the previous attestation was honest (0) or malicious (1).

• Mi ∈ [0, 1], the probability that the current attestation will be malicious if the
current block is malicious.

Block Endorser

Block endorsers are a vector of observations [Fi, Fi+1] where :

• Fi ∈ 0, 1, whether the current block is honest (0) or malicious (1).

• Fi+1 ∈ [0, 1], the probability that the next block will be malicious if the current
attestation is malicious.
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Observations in the asynchronous environment

From the above description of the observations, Mi−1 and Fi can be inferred from the
current state of the blockchain agents.

However, Mi and Fi+1 cannot as they are both representing probabilities of future
actions. M(i) is therefore set to 0 if the current attester is not playing a deviated Block
Endorser role, eQa([1,0],1)

∑i eQa([1,0],i) otherwise. Similarly, Fi+1 is set to 0 if the next proposer is not

playing a deviated Block Proposer role, eQp([1,0],1)

∑i eQp([1,0],i) otherwise.

The proposer and attester policies are therefore co-dependent. While this cor-
rectly models the decision process of this attack vector, it must be noted that this
induces instability, non-stationarity, and possibly oscillatory behaviors in the train-
ing process.

6.3.6 Reward Functions

Malicious agents share a global, per epoch cooperative reward function with is de-
fined as:

Gi =
∑k=N

k=0 (S
i
k − Si−1

k )

N
(6.4)

Where Si
k is the staked balance of the malicious agent k at the epoch i. The staked

balance increases with protocol rewards such as block proposal or valid and timely
attestations. Malicious agents can increase their staked balance by being honest, but
a more profitable strategy is to cooperate in order to create forks.

Since the above reward function may be difficult to learn and prone to instability
due to the interactions between the proposer and attester policies, we decided to
experiment with a second reward function, more biased towards the objective of
creating forks defined as :

Gi = F+
i − F−i (6.5)

Where F+
i is the number of successful forks during epoch i and F−i is the number

of failed forks during epoch i. This second reward function heavily incentivizes
agents to create forks but fails to express any rational economical objective.

6.4 Results

In this section we show the results obtained using both reward functions defined in
subsection 6.3.6 and briefly discuss them. All results are averaged across 10 different
simulations with similar settings, each lasting 500 Ethereum epoch for a real time
duration of around 30 minutes. For all plots we display the 90% confidence interval
to let the reader know about the stability or instability of the learning process.

Experiment 1: Average malicious gain reward

Using the average malicious gain protocol reward function defined in Equation 6.3.6
we did not observe any convergence. The agents failed to cooperate and never man-
aged to outperform the honest agents as shown in Figure 6.12.
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FIGURE 6.12: Average protocol reward of both honest and malicious
blockchain agents in simulations using the average malicious reward

criterion.

As expected, this sub optimal performance is linked to an inability to create more
successful forks than failed ones as shown in Figure 6.13.

FIGURE 6.13: Number of successful and failed forks in simulations
using the average malicious reward criterion.

Those results are inconclusive, but do not show that a rational financial criterion
does not lead to the creation of forks. The suspected reasons for the lack of conver-
gence will be discussed later in this section.

Experiment 2: Forks reward

Using the number of forks reward function defined in Equation 6.3.6 we observed
that the agents managed to cooperate and consistently outperformed the honest
agents as shown in Figure 6.14
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FIGURE 6.14: Average protocol reward of both honest and malicious
blockchain agents in simulations using the number of successful and

failed forks reward criterion.

Figure 6.15 shows that the malicious agents quickly learned to cooperate and
create significantly more successful forks than failed ones.

FIGURE 6.15: Number of successful and failed forks in a simulation
in simulations using the number of successful and failed forks reward

criterion.

However, they failed to reach a consistent and stable optimal policy where 6
successful forks and 0 failed forks would be created at each epoch.
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6.4.1 Discussion

To the extent of our experimentation, the first reward function did not yield any
positive result because it is highly volatile due to non-stationarity caused by the in-
terference between both policies. Indeed, an optimally performing proposer policy
would see it’s reward estimation error change greatly simply because of the actions
of a sub-optimal attester policy. It shows that MARL results are to be taken with
caution. In this case, the most profitable strategy is for the malicious Block Proposers
and Block Endorsers to cooperate.

The second reward function is biased as it is no longer an exploratory exper-
iment, the agents are directly incentivized to maximize the number of successful
forks. In this setting, the malicious agents outperformed the honest ones, but never
truly converged on the optimal policies which would create 6 successful forks and
no failed ones. The resulting strategies are sub-optimal and unstable as the num-
ber of forks shown in Figure 6.15 exhibit a relatively high variance throughout the
simulation.

By increasing the simulation duration we observed oscillations where the perfor-
mance of the policies dropped significantly before slowly regaining the levels shown
in Figure 6.15 if they are still able to explore the state, action space (i.e., if the policies
are not yet deterministic).

6.5 Conclusion

This experiment showed the usability of MARL within our simulator from Chapter
5 with both a negative and positive results. From the simulation results, we cannot
directly conclude that an economical objective leads to the creation of forks from
malicious agents, but we can conclude that an objective targeted towards forks leads
to superior protocol rewards for the malicious agents.

The simulation showcased some limitations associated to the usage of MARL in
highly complex blockchain environments such as the Ethereum 2.0 protocol.

Since blockchain systems are asynchronous, multi-agent systems, most environ-
ment that do not oversimplify the task at hand will encounter a similar degree of
non-stationarity and oscillatory behaviors that can greatly impact the outcome of a
simulation. While MARL is likely to be a suitable candidate for some scenarios, it
does require additional work compared to more natural, synchronous environments
and is by no means a silver bullet.

Other approaches that do not make strict assumption on the stationarity of the
state transition and reward functions should be considered as well. A prime exam-
ple of such method would be genetic algorithms (Lambora et al., 2019), which can
naturally evolve and improve multiple policies in inherently unstable environments
at the cost of increased computational requirements.
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Chapter 7

Conclusion

This chapter concludes this thesis by providing a short summary of the different
contributions in Section 7.1. We then discuss the limits of this work in Section 7.2 as
well as the perspectives in 7.3.

7.1 Summary

Driven by the need to advance the research field in AI based study of blockchain
systems, this thesis presented a global, role-based, organizational framework for
blockchain system simulation using AI, including one MARL case study on Ethereum
2.0.

We presented the role-based modelization framework in Chapter 3, called AGR4BS.
Its modularity and expressivity allows it to represent various blockchain systems
such as Bitcoin, Hyperledger Fabric, Tendermint or Ethereum 2.0, which differ in
permission scheme, algorithm and structure. Through its atomic components, namely
groups, roles and behaviors, it allows the representation of various attacks and, more
importantly, lays the necessary foundations on which rely the two other contribu-
tions of this thesis.

So, in chapter 4, we have proposed a qualification of blockchain protocol in-
centive vulnerabilities in the context of the AGR4BS model. The obtained taxon-
omy covers most known vulnerabilities, and links them to one or several existing
roles. Through risk and vulnerability metrics, it permits the computation of a prior-
ity score, thus, guiding future studies towards the roles that appear to be the most
at risk to harm the blockchain system if they were to be corrupted.

In chapter 5, we have seen that existing blockchain simulators are neither role-
based nor compatible with AI, and specifically MARL. We thus argued on the need
of a new tool, explicitly integrating the concepts of role and behavior, so that it can be
used for specific incentive based studies. So, we have developed a new role-based,
modular simulator, whose basic building blocks are the groups, roles and behaviors of
AGR4BS. Chapter 5 thoroughly detailed the characteristics of the simulator, which
core ones are: Modularity through a group, role and behavior structure. Reproducibil-
ity obtained by a virtualized time and networking management. MARL / AI compat-
ibility by using python and allowing the developers to modify any role and replace
one or several behaviors by AI models of their choice.

Moreover, we have followed an open source approach and made the simulator
available at https://github.com/hroussille/agr4bs.

This simulator already supports PoW blockchains such as Bitcoin and Ethereum
1 as well as newer PoS chains like Ethereum 2.0.

We have finally brought the previous contributions together in chapter 6 with
two simulation focused on Ethereum 2.0. Those experiments uses MARL to ex-
plore the potential of a vulnerability involving selfish block creation in Ethereum 2.0.

https://github.com/hroussille/agr4bs
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Agents were trained through MARL to optimize an economical objective didn’t con-
verge to the optimal strategy and never outperformed the honest ones. By changing
the objective criterion to incentivize the agents to create forks, we did obtain a pos-
itive result showing increased protocol rewards for the malicious agents involved
in selfish block creation. This has shown the usability of MARL within our frame-
work, but more generally, the use of AI in the context of blockchain vulnerability
exploration and analysis.

7.2 Limits

We identified three main limits in the work we have done during this thesis.
Firstly, the metrics used the compute the priority scores in Chapter 4 are infor-

mal and subjective. The impact of a vulnerability exploitation can have reputational
consequences, which, in turn, leads to economical and therefore, security implica-
tions. Such an impact is difficult to qualify and quantify, which could lead to invalid
ranking, thus defeating the very purpose of the priority score.

Secondly, the use of MARL does allow for studies of highly complex environ-
ments but this complexity may lead to the inability for the agents to learn anything
from the environment due to complex interactions that violate some of the base as-
sumptions of reinforcement learning such as stationarity. Still, the results are not as
explainable nor objective as what could be achieved with game theory. Complex en-
vironments must be simplified to some extent to permit any study which ultimately
induces a bias in the experiments. The definition of the Agent’s actions and obser-
vations inherently limit the agent’s capabilities. Some strategies become out of reach
simply because the required observations are missing, similarly, the actions of the
agents cannot be fully free as it would make the search space intractable. The en-
vironment itself may include bugs or faults that can bias the whole experiment and
significantly influence the outcome. Furthermore, as MARL are essentially a form
of statistical learning, meaning that an exhaustive search is impossible, therefore a
negative results is not a guarantee of a protocol’s safety.

Finally, our work can be used to evaluate and monitor the security of various
protocols, but we insist on the fact that it does not directly proposes solution to
mitigate any vulnerability: it is an automatic vulnerability detection framework.

7.3 Perspectives

Following this work, and as mentioned in Section 7.2, the taxonomy presented in
Chapter 4 should be refined to compute the priority scores based on objective metrics
for both risk and vulnerability.

In order to broaden the scope of applications of this thesis, more well known
protocols should be developed and added to the base blockchain model library of
the simulator such as Tendermint and Solana.

Similarly, we believe that experimenting with other automatic approaches such
as genetic algorithms and comparing the results with MARL based ones is interest-
ing, it could help the researchers select the best tools given a specific scenario of
interest.

As the blockchain ecosystem is now mostly focused on performance and through-
put optimizations, for instance using sharding, the simulator should be extended to
support non monolithic blockchains to stay relevant in the long term.
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This would allow the framework to be used as a continuous monitoring security
system before, during and after the upgrade processes of fast moving blockchains,
the main candidate for this being Ethereum 2.0.

Blockchain technology continues to evolve and is set to become an integral part
of global financial and digital infrastructure. Ensuring that such systems are secure
is a top priority. Our work leverages MARL and introduces a novel, adaptive way
of identifying vulnerabilities in these decentralized systems. As the complexity of
blockchains increases, the synergy with AI and blockchain will be paramount to
assess their security.
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